DeepMpMRI: Tensor-decomposition Regularized Learning for Fast and High-Fidelity Multi-Parametric Microstructural MR Imaging (2405.03159v2)
Abstract: Deep learning has emerged as a promising approach for learning the nonlinear mapping between diffusion-weighted MR images and tissue parameters, which enables automatic and deep understanding of the brain microstructures. However, the efficiency and accuracy in estimating multiple microstructural parameters derived from multiple diffusion models are still limited since previous studies tend to estimate parameter maps from distinct models with isolated signal modeling and dense sampling. This paper proposes DeepMpMRI, an efficient framework for fast and high-fidelity multiple microstructural parameter estimation from multiple models using highly sparse sampled q-space data. DeepMpMRI is equipped with a newly designed tensor-decomposition-based regularizer to effectively capture fine details by exploiting the high-dimensional correlation across microstructural parameters. In addition, we introduce a Nesterov-based adaptive learning algorithm that optimizes the regularization parameter dynamically to enhance the performance. DeepMpMRI is an extendable framework capable of incorporating flexible network architecture. Experimental results on the HCP dataset and the Alzheimer's disease dataset both demonstrate the superiority of our approach over 5 state-of-the-art methods in simultaneously estimating multi-model microstructural parameter maps for DKI and NODDI model with fine-grained details both quantitatively and qualitatively, achieving 4.5 - 15 $\times$ acceleration compared to the dense sampling of a total of 270 diffusion gradients.
- V. G. Kiselev, “Fundamentals of diffusion MRI physics,” NMR in Biomedicine, vol. 30, no. 3, p. e3602, 2017.
- D. C. Alexander, T. B. Dyrby, M. Nilsson, and H. Zhang, “Imaging brain microstructure with diffusion MRI: practicality and applications,” NMR in Biomedicine, vol. 32, no. 4, p. e3841, 2019.
- M. Camacho, M. Wilms, H. Almgren, K. Amador, R. Camicioli, Z. Ismail, O. Monchi, N. D. Forkert, and A. D. N. Initiative, “Exploiting macro-and micro-structural brain changes for improved parkinson’s disease classification from mri data,” npj Parkinson’s Disease, vol. 10, no. 1, p. 43, 2024.
- S. Soskic, H. F. Tregidgo, E. G. Todd, A. Bouzigues, D. M. Cash, L. L. Russell, D. L. Thomas, I. B. Malone, J. C. van Swieten, L. C. Jiskoot et al., “Dti changes of thalamic subregions in genetic frontotemporal dementia: findings from the genfi cohort,” Alzheimer’s & Dementia, vol. 19, p. e082484, 2023.
- P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophysical journal, vol. 66, no. 1, pp. 259–267, 1994.
- D. Le Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat, “Diffusion tensor imaging: concepts and applications,” Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 13, no. 4, pp. 534–546, 2001.
- K. M. Curran, L. Emsell, and A. Leemans, “Quantitative DTI measures,” Diffusion tensor imaging: A practical handbook, pp. 65–87, 2016.
- K. G. Schilling, D. Archer, F.-C. Yeh, F. Rheault, L. Y. Cai, C. Hansen, Q. Yang, K. Ramdass, A. T. Shafer, S. M. Resnick et al., “Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants,” Brain Structure and Function, vol. 227, no. 6, pp. 2111–2125, 2022.
- Y. Chen, Y. Wang, Z. Song, Y. Fan, T. Gao, and X. Tang, “Abnormal white matter changes in alzheimer’s disease based on diffusion tensor imaging: A systematic review,” Ageing Research Reviews, p. 101911, 2023.
- X. Chen, N. Roberts, Q. Zheng, Y. Peng, Y. Han, Q. Luo, J. Feng, T. Luo, and Y. Li, “Comparison of diffusion tensor imaging (dti) tissue characterization parameters in white matter tracts of patients with multiple sclerosis (ms) and neuromyelitis optica spectrum disorder (nmosd),” European Radiology, pp. 1–13, 2024.
- Q. Zhu, H. Wang, B. Xu, Z. Zhang, W. Shao, and D. Zhang, “Multimodal triplet attention network for brain disease diagnosis,” IEEE Transactions on Medical Imaging, vol. 41, no. 12, pp. 3884–3894, 2022.
- O. Pasternak, S. Kelly, V. J. Sydnor, and M. E. Shenton, “Advances in microstructural diffusion neuroimaging for psychiatric disorders,” Neuroimage, vol. 182, pp. 259–282, 2018.
- E. Kaden, N. D. Kelm, R. P. Carson, M. D. Does, and D. C. Alexander, “Multi-compartment microscopic diffusion imaging,” NeuroImage, vol. 139, pp. 346–359, 2016.
- M. Caranova, J. F. Soares, S. Batista, M. Castelo-Branco, and J. V. Duarte, “A systematic review of microstructural abnormalities in multiple sclerosis detected with noddi and dti models of diffusion-weighted magnetic resonance imaging,” Magnetic Resonance Imaging, 2023.
- D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, “MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.” Radiology, vol. 161, no. 2, pp. 401–407, 1986.
- D. Le Bihan, E. Breton, D. Lallemand, M.-L. Aubin, J. Vignaud, and M. Laval-Jeantet, “Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.” Radiology, vol. 168, no. 2, pp. 497–505, 1988.
- Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, and P. J. Basser, “Axcaliber: a method for measuring axon diameter distribution from diffusion MRI,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 59, no. 6, pp. 1347–1354, 2008.
- E. Kaden, F. Kruggel, and D. C. Alexander, “Quantitative mapping of the per-axon diffusion coefficients in brain white matter,” Magnetic resonance in medicine, vol. 75, no. 4, pp. 1752–1763, 2016.
- H. Zhang, T. Schneider, C. A. Wheeler-Kingshott, and D. C. Alexander, “NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain,” Neuroimage, vol. 61, no. 4, pp. 1000–1016, 2012.
- D. S. Novikov, J. Veraart, I. O. Jelescu, and E. Fieremans, “Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI,” NeuroImage, vol. 174, pp. 518–538, 2018.
- D. K. Jones, D. C. Alexander, R. Bowtell, M. Cercignani, F. Dell’Acqua, D. J. McHugh, K. L. Miller, M. Palombo, G. J. Parker, U. S. Rudrapatna et al., “Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI,” NeuroImage, vol. 182, pp. 8–38, 2018.
- E. T. McKinnon, J. A. Helpern, and J. H. Jensen, “Modeling white matter microstructure with fiber ball imaging,” Neuroimage, vol. 176, pp. 11–21, 2018.
- D. Le Bihan, C. Poupon, A. Amadon, and F. Lethimonnier, “Artifacts and pitfalls in diffusion MRI,” Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 24, no. 3, pp. 478–488, 2006.
- V. Golkov, A. Dosovitskiy, J. I. Sperl, M. I. Menzel, M. Czisch, P. Sämann, T. Brox, and D. Cremers, “Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1344–1351, 2016.
- E. K. Gibbons, K. K. Hodgson, A. S. Chaudhari, L. G. Richards, J. J. Majersik, G. Adluru, and E. V. DiBella, “Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning,” Magnetic resonance in medicine, vol. 81, no. 4, pp. 2399–2411, 2019.
- Q. Tian, B. Bilgic, Q. Fan, C. Liao, C. Ngamsombat, Y. Hu, T. Witzel, K. Setsompop, J. R. Polimeni, and S. Y. Huang, “DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning,” NeuroImage, vol. 219, p. 117017, 2020.
- H. Li, Z. Liang, C. Zhang, R. Liu, J. Li, W. Zhang, D. Liang, B. Shen, X. Zhang, Y. Ge et al., “SuperDTI: Ultrafast DTI and fiber tractography with deep learning,” Magnetic resonance in medicine, vol. 86, no. 6, pp. 3334–3347, 2021.
- A. Daducci, E. J. Canales-Rodríguez, H. Zhang, T. B. Dyrby, D. C. Alexander, and J.-P. Thiran, “Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data,” Neuroimage, vol. 105, pp. 32–44, 2015.
- C. Ye, X. Li, and J. Chen, “A deep network for tissue microstructure estimation using modified LSTM units,” Medical image analysis, vol. 55, pp. 49–64, 2019.
- C. Ye, Y. Li, and X. Zeng, “An improved deep network for tissue microstructure estimation with uncertainty quantification,” Medical image analysis, vol. 61, p. 101650, 2020.
- G. Chen, Y. Hong, Y. Zhang, J. Kim, K. M. Huynh, J. Ma, W. Lin, D. Shen, P.-T. Yap, and U. B. C. P. Consortium, “Estimating tissue microstructure with undersampled diffusion data via graph convolutional neural networks,” in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2020, pp. 280–290.
- G. Chen, H. Jiang, J. Liu, J. Ma, H. Cui, Y. Xia, and P.-T. Yap, “Hybrid graph transformer for tissue microstructure estimation with undersampled diffusion MRI data,” in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2022, pp. 113–122.
- Q. Fan, Q. Tian, C. Ngamsombat, and S. Y. Huang, “DeepHIBRID: How to condense the sampling in the kq joint space for microstructural diffusion metric estimation empowered by deep learning,” in Proceedings of International Society for Magnetic Resonance in Medicine, 2020, p. 4405.
- J. Park, W. Jung, E.-J. Choi, S.-H. Oh, J. Jang, D. Shin, H. An, and J. Lee, “DIFFnet: diffusion parameter mapping network generalized for input diffusion gradient schemes and b-value,” IEEE Transactions on Medical Imaging, vol. 41, no. 2, pp. 491–499, 2021.
- S. HashemizadehKolowri, R.-R. Chen, G. Adluru, and E. V. DiBella, “Jointly estimating parametric maps of multiple diffusion models from undersampled q-space data: A comparison of three deep learning approaches,” Magnetic Resonance in Medicine, vol. 87, no. 6, pp. 2957–2971, 2022.
- T. G. Kolda, “Orthogonal tensor decompositions,” SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 1, pp. 243–255, 2001.
- T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.
- J. Chen and Y. Saad, “On the tensor svd and the optimal low rank orthogonal approximation of tensors,” SIAM journal on Matrix Analysis and Applications, vol. 30, no. 4, pp. 1709–1734, 2009.
- Y. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” Proceedings of the USSR Academy of Sciences, vol. 269, pp. 543–547, 1983.
- J. Cheng, D. Shen, P.-T. Yap, and P. J. Basser, “Novel single and multiple shell uniform sampling schemes for diffusion MRI using spherical codes,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part I 18. Springer, 2015, pp. 28–36.
- J. Cheng, D. Shen, P. Yap, and P. J. Basser, “Single-and multiple-shell uniform sampling schemes for diffusion MRI using spherical codes,” IEEE transactions on medical imaging, vol. 37, no. 1, pp. 185–199, 2017.
- M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order tensors,” Linear Algebra and its Applications, vol. 435, no. 3, pp. 641–658, 2011.
- M. E. Kilmer, L. Horesh, H. Avron, and E. Newman, “Tensor-tensor algebra for optimal representation and compression of multiway data,” Proceedings of the National Academy of Sciences, vol. 118, no. 28, p. e2015851118, 2021.
- F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp. 164–189, 1927.
- R. A. Harshman et al., “Foundations of the parafac procedure: Models and conditions for an “explanatory” multi-modal factor analysis,” UCLA working papers in phonetics, vol. 16, no. 1, p. 84, 1970.
- L. R. Tucker, “Implications of factor analysis of three-way matrices for measurement of change,” Problems in measuring change, vol. 15, no. 122-137, p. 3, 1963.
- L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.
- I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.
- I. O. Jelescu, J. Veraart, E. Fieremans, and D. S. Novikov, “Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue,” NMR in Biomedicine, vol. 29, no. 1, pp. 33–47, 2016.
- D. S. Novikov, V. G. Kiselev, and S. N. Jespersen, “On modeling,” Magnetic resonance in medicine, vol. 79, no. 6, pp. 3172–3193, 2018.
- I. O. Jelescu, M. Palombo, F. Bagnato, and K. G. Schilling, “Challenges for biophysical modeling of microstructure,” Journal of Neuroscience Methods, vol. 344, p. 108861, 2020.
- J. Cheng, D. Shen, P. J. Basser, and P.-T. Yap, “Joint 6d k-q space compressed sensing for accelerated high angular resolution diffusion MRI,” in International Conference on Information Processing in Medical Imaging. Springer, 2015, pp. 782–793.
- P.-T. Yap, Y. Zhang, and D. Shen, “Multi-tissue decomposition of diffusion MRI signals via l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT sparse-group estimation,” IEEE Transactions on Image Processing, vol. 25, no. 9, pp. 4340–4353, 2016.
- E. Schwab, R. Vidal, and N. Charon, “Joint spatial-angular sparse coding for dMRI with separable dictionaries,” Medical image analysis, vol. 48, pp. 25–42, 2018.
- E. Schwab, B. D. Haeffele, R. Vidal, and N. Charon, “Global optimality in separable dictionary learning with applications to the analysis of diffusion MRI,” SIAM Journal on Imaging Sciences, vol. 12, no. 4, pp. 1967–2008, 2019.
- F. Shi, J. Cheng, L. Wang, P.-T. Yap, and D. Shen, “Super-resolution reconstruction of diffusion-weighted images using 4d low-rank and total variation,” in Computational Diffusion MRI: MICCAI Workshop, Munich, Germany, October 9th, 2015. Springer, 2016, pp. 15–25.
- C. Zhang, T. M. Arefin, U. Nakarmi, C. H. Lee, H. Li, D. Liang, J. Zhang, and L. Ying, “Acceleration of three-dimensional diffusion magnetic resonance imaging using a kernel low-rank compressed sensing method,” Neuroimage, vol. 210, p. 116584, 2020.
- G. Ramos-Llordén, G. Vegas-Sánchez-Ferrero, C. Liao, C.-F. Westin, K. Setsompop, and Y. Rathi, “Snr-enhanced diffusion MRI with structure-preserving low-rank denoising in reproducing kernel hilbert spaces,” Magnetic resonance in medicine, vol. 86, no. 3, pp. 1614–1632, 2021.
- R. W. Liu, L. Shi, W. Huang, J. Xu, S. C. H. Yu, and D. Wang, “Generalized total variation-based MRI rician denoising model with spatially adaptive regularization parameters,” Magnetic resonance imaging, vol. 32, no. 6, pp. 702–720, 2014.
- I. Teh, D. McClymont, E. Carruth, J. Omens, A. McCulloch, and J. E. Schneider, “Improved compressed sensing and super-resolution of cardiac diffusion MRI with structure-guided total variation,” Magnetic resonance in medicine, vol. 84, no. 4, pp. 1868–1880, 2020.
- C. Eckart and G. Young, “The approximation of one matrix by another of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.
- J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.
- J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.” Journal of machine learning research, vol. 13, no. 2, 2012.
- A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood, “Online learning rate adaptation with hypergradient descent,” arXiv preprint arXiv:1703.04782, 2017.
- L. B. Almeida, T. Langlois, J. D. Amaral, and A. Plakhov, “Parameter adaptation in stochastic optimization,” in On-line learning in neural networks, 1999, pp. 111–134.
- D. M. Rubio, “Convergence analysis of an adaptive method of gradient descent,” University of Oxford, Oxford, M. Sc. thesis, 2017.
- J. T. Zhou, K. Di, J. Du, X. Peng, H. Yang, S. J. Pan, I. Tsang, Y. Liu, Z. Qin, and R. S. M. Goh, “Sc2net: Sparse lstms for sparse coding,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.
- D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil, W.-M. H. Consortium et al., “The WU-Minn human connectome project: an overview,” Neuroimage, vol. 80, pp. 62–79, 2013.
- G. Chen, Y. Hong, K. M. Huynh, and P.-T. Yap, “Deep learning prediction of diffusion MRI data with microstructure-sensitive loss functions,” Medical image analysis, vol. 85, p. 102742, 2023.