Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pathwise uniform convergence of a full discretization for a three-dimensional stochastic Allen-Cahn equation with multiplicative noise (2405.03016v5)

Published 5 May 2024 in math.NA and cs.NA

Abstract: This paper analyzes a full discretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. The discretization combines the Euler scheme for temporal approximation and the finite element method for spatial approximation. A pathwise uniform convergence rate is derived, encompassing general spatial ( Lq )-norms, by using discrete versions of deterministic and stochastic maximal ( Lp )-regularity estimates. Additionally, the theoretical convergence rate is validated through numerical experiments. The primary contribution of this work is the introduction of a technique to establish the pathwise uniform convergence of finite element-based full discretizations for nonlinear stochastic parabolic equations within the framework of general spatial ( Lq )-norms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metall., 27:1084–1095, 1979.
  2. Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations. Stoch PDE: Anal. Comp., 11:211–268, 2023.
  3. S. Becker and A. Jentzen. Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau quations. Stoch. Process. Appl., 129:28–69, 2019.
  4. Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation. IMA J. Numer. Anal., 39:2096–2134, 2019.
  5. Strong convergence of a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation. SIAM J. Numer., 56:708–731, 2018.
  6. Phase transitions and generalized motion by mean curvature. Commm. Pure Appl. Math., 45:1097–1123, 1992.
  7. Finite element methods for the stochastic Allen-Cahn equation with gradient-type multiplicative noises. SIAM J. Numer. Anal., 55:194–216, 2017.
  8. T. Funaki. The scaling limit for a stochastic PDE and the separation of phases. Probab. Theory Relat. Fields, 102:221–288, 1995.
  9. I. Gyöngy and A. Millet. Rate of convergence of space time approximations for stochastic evolution equations. Potential Anal., 30:29–64, 2009.
  10. Convergence of tamed Euler scheme for a class of stochastic evolution equations. Stoch. Partial Differ. Equ. Anal. Comput., 4:225–245, 2016.
  11. Strong convergence of full-discrete nonlinearity-truncated accelerated exponential Euler-type approximations for stochastic Kuramoto-Sivashinsky equations. Commun. Math. Sci., 16:1489–1529, 2018.
  12. Analysis in Banach spaces. Springer, Cham, 2017.
  13. A. Jentzen and P. E. Kloeden. The numerical approximation of stochastic partial differential equations. Milan J. Math., 77:205–244, 2009.
  14. A. Jentzen and P. Pušnik. Exponential moments for numerical approximations of stochastic partial differential equations. Stoch. Partial Differ. Equ. Anal. Comput., 6:565–617, 2018.
  15. A. Jentzen and P. Pušnik. Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous nonlinearities. IMA J. Numer. Anal., 40:1005–1050, 2020.
  16. T. Kemmochi. Discrete maximal regularity for abstract cauchy problems. Studia Math., 234:241–263, 2016.
  17. Action minimization and sharp-interface limits for the stochastic Allen-Cahn equation. Comm. Pure Appl. Math., 60:393–438, 2007.
  18. On the discretisation in time of the stochastic Allen-Cahn equation. Math. Nachr., 291:966–995, 2018.
  19. Finite element approximation of the Cahn-Hilliard-Cook equations. SIAM J. Numer., 49:2407–2429, 2011.
  20. B. Li. Maximum-norm stability and maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math., 131:489–516, 2015.
  21. B. Li and X. Xie. Stability and convergence of the Euler scheme for stochastic evolution equations in Banach spaces. arXiv:2211.08375, 2023.
  22. B. Li and Q. Zhou. Convergence of a spatial semidiscretization for a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. arXiv:2401.09834, 2024.
  23. B. Li and Z. Zhou. Discrete stochastic maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-regularity and convergence of a spatial semidiscretization for a stochastic parabolic equation. arXiv:2311.04615, 2023.
  24. W. Liu. Well-posedness of stochastic partial differential equations with Lyapunov condition. J. Differ. Equ., 255:572–592, 2013.
  25. W. Liu and M. Röckner. SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal., 259:2902–2922, 2010.
  26. Z. Liu and Z. Qiao. Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise. Stoch PDE: Anal. Comp., 9:559–602, 2021.
  27. A. Majee and A. Prohl. Optimal strong rates of convergence for a space-time discretization of the stochastic Allen-Cahn equation with multiplicative noise. Comput. Methods Appl. Math., 18(2):297–311, 2018.
  28. G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge University Press, 2 edition, 2014.
  29. R. Qi and X. Wang. Optimal error estimates of Galerkin finite element methods for stochastic Allen-Cahn equation with additive noise. J. Sci. Comput., 80:1171–1194, 2019.
  30. An efficient approximation to the stochastic Allen-Cahn equation with random diffusion coefficient field and multiplicative noise. Adv. Comput. Math., 49:73, 2023.
  31. M. Röger and H. Weber. Tightness for a stochastic Allen–Cahn equation. Stoch PDE: Anal. Comp., 1:175–203, 2013.
  32. M. Sauer and W. Stannat. Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition. Math. Comp., 84:743–766, 2015.
  33. L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin, 2007.
  34. V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, 2006.
  35. Stochastic maximal Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-regularity. Ann. Probab., 40:788–812, 2012.
  36. J. van Neerven and M. Verrar. Maximal inequalities for stochastic convolutions and pathwise uniform convergence of time discretization schemes. Stoch PDE: Anal. Comp., 10:516–581, 2022.
  37. X. Wang. An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation. Stoch. Process. Appl., 130:6271–6299, 2020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com