Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trade-off relations between Bell nonlocality and local Kochen-Specker contextuality in generalized Bell scenarios (2405.02964v2)

Published 5 May 2024 in quant-ph

Abstract: The relations between Bell nonlocality and Kochen-Specker contextuality have been subject of research from many different perspectives in the last decades. Recently, some interesting results on these relations have been explored in the so-called generalized Bell scenarios, that is, scenarios where Bell spatial separation (or agency independence) coexist with (at least one of the) parties' ability to perform compatible measurements at each round of the experiment. When this party has an $n$-cycle compatiblity setup, it was first claimed that Bell nonlocality could not be concomitantly observed with contextuality at this party's local experiment. However, by a more natural reading of the definition of locality, it turns out that both Bell nonlocality and local contextuality can, in fact, be jointly present. In spite of it, in this work we prove that there cannot be arbitrary amounts of both of these two resources together. That is, we show the existence of a trade-off relation between Bell nonlocality and local contextuality in such scenarios. We explore this trade-off both in terms of inequalities and quantifiers, and we discuss how it can be understood in terms of a `global' notion of contextuality. Furthermore, we show that such notion does not only encompass local contextuality and Bell nonlocality, but also other forms of nonclassical correlations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. J. S. Bell, Physics Physique Fizika 1, 195 (1964).
  2. S. Kochen and E. Specker, Indiana Univ. Math. J. 17, 59 (1968).
  3. A. Stairs, Philosophy of Science 50, 578–602 (1983).
  4. P. Heywood and M. L. G. Redhead, Foundations of Physics 13, 481 (1983).
  5. A. Cabello, Phys. Rev. Lett. 127, 070401 (2021a).
  6. A. Cabello, Foundations of Physics 51 (2021b).
  7. A. Cabello, S. Severini,  and A. Winter, “Non-contextuality of physical theories as an axiom,”  (2010), arXiv:1010.2163 [quant-ph] .
  8. L. Vandré  and M. Terra Cunha, Physical Review A 106 (2022).
  9. A. Fine, Phys. Rev. Lett. 48, 291 (1982).
  10. S. Boyd and L. Vandenberghe, Convex optimization (Cambridge university press, 2004).
  11. S. Lörwald and G. Reinelt, EURO Journal on Computational Optimization 3, 297 (2015).
  12. S. Pironio, Journal of Mathematical Physics 46, 062112 (2005).
  13. L. Porto, G. Ruffolo, R. Rabelo, M. Terra Cunha,  and P. Kurzyński, “Github repository,” https://github.com/ruffolo14/Generalized-Bell-Scenarios.
  14. V. Scarani, Bell nonlocality (Oxford University Press, 2019).
  15. S. L. Braunstein and C. M. Caves, Annals of Physics 202, 22 (1990).
  16. A. Peres, Physics Letters A 151, 107 (1990).
  17. N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990).
  18. A. Cabello, Phys. Rev. Lett. 104, 220401 (2010).
  19. Recall that in the scenarios we study in this work, the contextuality properties of a behavior are associated to Bob’s local experiment. That is the reason why define the contextual fraction in this fashion.
  20. S. Camalet, Phys. Rev. A 95, 062329 (2017).
  21. A. A. Méthot and V. Scarani, Quantum Info. Comput. 7, 157–170 (2007).
  22. A. Cabello, Phys. Rev. Lett. 101, 210401 (2008).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com