Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laser wakefield acceleration of ions with a transverse flying focus (2405.02690v2)

Published 4 May 2024 in physics.plasm-ph, physics.acc-ph, physics.app-ph, and physics.optics

Abstract: The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerators have remained stagnant at maximum ion energies of 100 MeV/nucleon for the last twenty years. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration. Here we show that a laser pulse with a focal spot that moves transverse to the laser propagation direction enables wakefield acceleration of ions to GeV energies in underdense plasma. Three-dimensional particle-in-cell simulations demonstrate that this relativistic-intensity "transverse flying focus" can trap ions in a comoving electrostatic pocket, producing a monoenergetic collimated ion beam. With a peak intensity of $10{20}\,$W/cm$2$ and an acceleration distance of $0.44\,$cm, we observe a proton beam with $23.1\,$pC charge, $1.6\,$GeV peak energy, and $3.7\,$% relative energy spread. This approach allows for compact high-repetition-rate production of high-energy ions, highlighting the capability of more generalized spatio-temporal pulse shaping to address open problems in plasma physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. Tumasyan, A. et al. Search for exotic Higgs boson decays h→𝒜⁢𝒜→4⁢γ→ℎ𝒜𝒜→4𝛾h\rightarrow\mathcal{A}\mathcal{A}\rightarrow 4\gammaitalic_h → caligraphic_A caligraphic_A → 4 italic_γ with events containing two merged diphotons in proton-proton collisions at s=13⁢  ⁢TeV𝑠13  TeV\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV. Phys. Rev. Lett. 131, 101801 (2023).
  2. Kondo, Y. et al. First observation of 28O. Nature 620, 965–970 (2023).
  3. Marcowith, A. et al. The microphysics of collisionless shock waves. Rep. Prog. Phys. 79, 046901 (2016).
  4. Schaeffer, D. B. et al. Proton imaging of high-energy-density laboratory plasmas. Rev. Mod. Phys. 95, 045007 (2023).
  5. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 82, 383 (2010).
  6. Wiedemann, H. Particle accelerator physics (Springer Nature, 2015).
  7. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 (2012).
  8. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751 (2013).
  9. Mora, P. Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002 (2003).
  10. Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003 (2005).
  11. Robinson, A. et al. Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Control. Fusion 51, 024004 (2009).
  12. Naumova, N. et al. Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002 (2009).
  13. Silva, L. O. et al. Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015002 (2004).
  14. Ji, L. et al. Generating monoenergetic heavy-ion bunches with laser-induced electrostatic shocks. Phys. Rev. Lett. 101, 164802 (2008).
  15. Fiúza, F. et al. Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109, 215001 (2012).
  16. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004).
  17. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. Accel. Beams. 11, 031301 (2008).
  18. Yan, X. et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003 (2008).
  19. Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. Phys. Rev. Lett. 102, 145002 (2009).
  20. Yin, L. et al. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett. 107, 045003 (2011).
  21. High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 105, 135002 (2010).
  22. Bulanov, S. S. et al. Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17, 043105 (2010).
  23. Clark, E. et al. Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670 (2000).
  24. Snavely, R. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945 (2000).
  25. Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 4108 (2000).
  26. Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).
  27. Toncian, T. et al. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science 312, 410–413 (2006).
  28. Willingale, L. et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96, 245002 (2006).
  29. Henig, A. et al. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009).
  30. Haberberger, D. et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys 8, 95–99 (2012).
  31. Kar, S. et al. Ion acceleration in multispecies targets driven by intense laser radiation pressure. Phys. Rev. Lett. 109, 185006 (2012).
  32. Bin, J. et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett. 115, 064801 (2015).
  33. Palaniyappan, S. et al. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas. Nat. Commun. 6, 1–12 (2015).
  34. Wagner, F. et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2subscriptCH2\mathrm{CH}_{2}roman_CH start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT targets. Phys. Rev. Lett. 116, 205002 (2016).
  35. Zhang, H. et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 119, 164801 (2017).
  36. Scullion, C. et al. Polarization dependence of bulk ion acceleration from ultrathin foils irradiated by high-intensity ultrashort laser pulses. Phys. Rev. Lett. 119, 054801 (2017).
  37. Higginson, A. et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 9, 1–9 (2018).
  38. Ma, W. et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett. 122, 014803 (2019).
  39. McIlvenny, A. et al. Selective ion acceleration by intense radiation pressure. Phys. Rev. Lett. 127, 194801 (2021).
  40. Wang, P. et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity. Phys. Rev. X. 11, 021049 (2021).
  41. Rehwald, M. et al. Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density. Nat. Commun. 14, 4009 (2023).
  42. Dover, N. P. et al. Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities. Light Sci. Appl. 12, 71 (2023).
  43. Martin, P. et al. Narrow-band acceleration of gold ions to GeV energies from ultra-thin foils. Commun. Phys. 7, 3 (2024).
  44. Kaluza, M. et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003 (2004).
  45. Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979).
  46. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009).
  47. Gonsalves, A. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).
  48. Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021).
  49. Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004 (2008).
  50. Accelerating ions by crossing two ultraintense lasers in a near-critical relativistically transparent plasma. Phys. Rev. Lett. 129, 274801 (2022).
  51. Synchronized ion acceleration by ultraintense slow light. Phys. Rev. Lett. 116, 085004 (2016).
  52. Bubble regime for ion acceleration in a laser-driven plasma. Phys. Rev. E 76, 055402 (2007).
  53. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica 4, 1298–1304 (2017).
  54. Froula, D. H. et al. Spatiotemporal control of laser intensity. Nat. Photonics 12, 262–265 (2018).
  55. Liberman, A. et al. Use of spatiotemporal couplings and an axiparabola to control the velocity of peak intensity. Opt. Lett. 49, 814–817 (2024).
  56. Pigeon, J. et al. Ultrabroadband flying-focus using an axiparabola-echelon pair. Opt. Express 32, 576–585 (2024).
  57. Simpson, T. T. et al. Spatiotemporal control of laser intensity through cross-phase modulation. Opt. Express 30, 9878–9891 (2022).
  58. Turnbull, D. et al. Raman amplification with a flying focus. Phys. Rev. Lett. 120, 024801 (2018).
  59. Howard, A. et al. Photon acceleration in a flying focus. Phys. Rev. Lett. 123, 124801 (2019).
  60. Palastro, J. et al. Dephasingless laser wakefield acceleration. Phys. Rev. Lett. 124, 134802 (2020).
  61. Phase-locked laser-wakefield electron acceleration. Nat. Photonics 14, 475–479 (2020).
  62. Kabacinski, A. et al. Spatio-temporal couplings for controlling group velocity in longitudinally pumped seeded soft X-ray lasers. Nat. Photonics 17, 354–359 (2023).
  63. Signatures of vacuum birefringence in low-power flying focus pulses. Phys. Rev. D 109, 056009 (2024).
  64. Ramsey, D. et al. Exact solutions for the electromagnetic fields of a flying focus. Phys. Rev. A 107, 013513 (2023).
  65. Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse. Plasma Phys. Control. Fusion 51, 024005 (2009).
  66. Palmer, C. et al. Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser. Phys. Rev. Lett. 108, 225002 (2012).
  67. Effects of the transverse instability and wave breaking on the laser-driven thin foil acceleration. Phys. Rev. Lett. 125, 104801 (2020).
  68. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177 (2012).
  69. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 94, 045001 (2022).
  70. Arber, T. et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57, 113001 (2015).
Citations (1)

Summary

We haven't generated a summary for this paper yet.