Laser wakefield acceleration of ions with a transverse flying focus (2405.02690v2)
Abstract: The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerators have remained stagnant at maximum ion energies of 100 MeV/nucleon for the last twenty years. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration. Here we show that a laser pulse with a focal spot that moves transverse to the laser propagation direction enables wakefield acceleration of ions to GeV energies in underdense plasma. Three-dimensional particle-in-cell simulations demonstrate that this relativistic-intensity "transverse flying focus" can trap ions in a comoving electrostatic pocket, producing a monoenergetic collimated ion beam. With a peak intensity of $10{20}\,$W/cm$2$ and an acceleration distance of $0.44\,$cm, we observe a proton beam with $23.1\,$pC charge, $1.6\,$GeV peak energy, and $3.7\,$% relative energy spread. This approach allows for compact high-repetition-rate production of high-energy ions, highlighting the capability of more generalized spatio-temporal pulse shaping to address open problems in plasma physics.
- Tumasyan, A. et al. Search for exotic Higgs boson decays h→𝒜𝒜→4γ→ℎ𝒜𝒜→4𝛾h\rightarrow\mathcal{A}\mathcal{A}\rightarrow 4\gammaitalic_h → caligraphic_A caligraphic_A → 4 italic_γ with events containing two merged diphotons in proton-proton collisions at s=13 TeV𝑠13 TeV\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV. Phys. Rev. Lett. 131, 101801 (2023).
- Kondo, Y. et al. First observation of 28O. Nature 620, 965–970 (2023).
- Marcowith, A. et al. The microphysics of collisionless shock waves. Rep. Prog. Phys. 79, 046901 (2016).
- Schaeffer, D. B. et al. Proton imaging of high-energy-density laboratory plasmas. Rev. Mod. Phys. 95, 045007 (2023).
- Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 82, 383 (2010).
- Wiedemann, H. Particle accelerator physics (Springer Nature, 2015).
- Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 (2012).
- Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751 (2013).
- Mora, P. Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002 (2003).
- Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003 (2005).
- Robinson, A. et al. Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Control. Fusion 51, 024004 (2009).
- Naumova, N. et al. Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002 (2009).
- Silva, L. O. et al. Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015002 (2004).
- Ji, L. et al. Generating monoenergetic heavy-ion bunches with laser-induced electrostatic shocks. Phys. Rev. Lett. 101, 164802 (2008).
- Fiúza, F. et al. Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109, 215001 (2012).
- Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004).
- Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. Accel. Beams. 11, 031301 (2008).
- Yan, X. et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003 (2008).
- Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. Phys. Rev. Lett. 102, 145002 (2009).
- Yin, L. et al. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett. 107, 045003 (2011).
- High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 105, 135002 (2010).
- Bulanov, S. S. et al. Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17, 043105 (2010).
- Clark, E. et al. Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670 (2000).
- Snavely, R. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945 (2000).
- Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 4108 (2000).
- Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).
- Toncian, T. et al. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science 312, 410–413 (2006).
- Willingale, L. et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96, 245002 (2006).
- Henig, A. et al. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009).
- Haberberger, D. et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys 8, 95–99 (2012).
- Kar, S. et al. Ion acceleration in multispecies targets driven by intense laser radiation pressure. Phys. Rev. Lett. 109, 185006 (2012).
- Bin, J. et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett. 115, 064801 (2015).
- Palaniyappan, S. et al. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas. Nat. Commun. 6, 1–12 (2015).
- Wagner, F. et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2subscriptCH2\mathrm{CH}_{2}roman_CH start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT targets. Phys. Rev. Lett. 116, 205002 (2016).
- Zhang, H. et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 119, 164801 (2017).
- Scullion, C. et al. Polarization dependence of bulk ion acceleration from ultrathin foils irradiated by high-intensity ultrashort laser pulses. Phys. Rev. Lett. 119, 054801 (2017).
- Higginson, A. et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 9, 1–9 (2018).
- Ma, W. et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett. 122, 014803 (2019).
- McIlvenny, A. et al. Selective ion acceleration by intense radiation pressure. Phys. Rev. Lett. 127, 194801 (2021).
- Wang, P. et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity. Phys. Rev. X. 11, 021049 (2021).
- Rehwald, M. et al. Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density. Nat. Commun. 14, 4009 (2023).
- Dover, N. P. et al. Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities. Light Sci. Appl. 12, 71 (2023).
- Martin, P. et al. Narrow-band acceleration of gold ions to GeV energies from ultra-thin foils. Commun. Phys. 7, 3 (2024).
- Kaluza, M. et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003 (2004).
- Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979).
- Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009).
- Gonsalves, A. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).
- Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021).
- Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004 (2008).
- Accelerating ions by crossing two ultraintense lasers in a near-critical relativistically transparent plasma. Phys. Rev. Lett. 129, 274801 (2022).
- Synchronized ion acceleration by ultraintense slow light. Phys. Rev. Lett. 116, 085004 (2016).
- Bubble regime for ion acceleration in a laser-driven plasma. Phys. Rev. E 76, 055402 (2007).
- Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica 4, 1298–1304 (2017).
- Froula, D. H. et al. Spatiotemporal control of laser intensity. Nat. Photonics 12, 262–265 (2018).
- Liberman, A. et al. Use of spatiotemporal couplings and an axiparabola to control the velocity of peak intensity. Opt. Lett. 49, 814–817 (2024).
- Pigeon, J. et al. Ultrabroadband flying-focus using an axiparabola-echelon pair. Opt. Express 32, 576–585 (2024).
- Simpson, T. T. et al. Spatiotemporal control of laser intensity through cross-phase modulation. Opt. Express 30, 9878–9891 (2022).
- Turnbull, D. et al. Raman amplification with a flying focus. Phys. Rev. Lett. 120, 024801 (2018).
- Howard, A. et al. Photon acceleration in a flying focus. Phys. Rev. Lett. 123, 124801 (2019).
- Palastro, J. et al. Dephasingless laser wakefield acceleration. Phys. Rev. Lett. 124, 134802 (2020).
- Phase-locked laser-wakefield electron acceleration. Nat. Photonics 14, 475–479 (2020).
- Kabacinski, A. et al. Spatio-temporal couplings for controlling group velocity in longitudinally pumped seeded soft X-ray lasers. Nat. Photonics 17, 354–359 (2023).
- Signatures of vacuum birefringence in low-power flying focus pulses. Phys. Rev. D 109, 056009 (2024).
- Ramsey, D. et al. Exact solutions for the electromagnetic fields of a flying focus. Phys. Rev. A 107, 013513 (2023).
- Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse. Plasma Phys. Control. Fusion 51, 024005 (2009).
- Palmer, C. et al. Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser. Phys. Rev. Lett. 108, 225002 (2012).
- Effects of the transverse instability and wave breaking on the laser-driven thin foil acceleration. Phys. Rev. Lett. 125, 104801 (2020).
- Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177 (2012).
- Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 94, 045001 (2022).
- Arber, T. et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57, 113001 (2015).