Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Updating Windows Malware Detectors: Balancing Robustness and Regression against Adversarial EXEmples (2405.02646v2)

Published 4 May 2024 in cs.CR

Abstract: Adversarial EXEmples are carefully-perturbed programs tailored to evade machine learning Windows malware detectors, with an ongoing effort to develop robust models able to address detection effectiveness. However, even if robust models can prevent the majority of EXEmples, to maintain predictive power over time, models are fine-tuned to newer threats, leading either to partial updates or time-consuming retraining from scratch. Thus, even if the robustness against adversarial EXEmples is higher, the new models might suffer a regression in performance by misclassifying threats that were previously correctly detected. For these reasons, we study the trade-off between accuracy and regression when updating Windows malware detectors by proposing EXE-scanner, a plugin that can be chained to existing detectors to promptly stop EXEmples without causing regression. We empirically show that previously proposed hardening techniques suffer a regression of accuracy when updating non-robust models, exacerbating the gap when considering low false positives regimes and temporal drifts affecting data. Also, through EXE-scanner we gain evidence on the detectability of adversarial EXEmples, showcasing the presence of artifacts left inside while creating them. Due to its design, EXE-scanner can be chained to any classifier to obtain the best performance without the need for costly retraining. To foster reproducibility, we openly release the source code, along with the dataset of adversarial EXEmples based on state-of-the-art perturbation algorithms.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com