Spontaneous Strong Symmetry Breaking in Open Systems: Purification Perspective (2405.02402v1)
Abstract: We explore the landscape of the decoherence effect in mixed-state ensembles from a purification perspective. We analyze the spontaneous strong-to-weak symmetry breaking (SSSB) in mixed states triggered by local quantum channels by mapping this decoherence process to unitary operations in the purified state within an extended Hilbert space. Our key finding is that mixed-state long-range order and SSSB can be mapped into symmetry-protected topological (SPT) order in the purified state. Notably, the measurement-induced long-range order in the purified SPT state mirrors the long-range order in the mixed state due to SSSB, characterized by the Renyi-2 correlator. We establish a correspondence between fidelity correlators in the mixed state, which serve as a measure of SSSB, and strange correlators in the purification, which signify the SPT order. This purification perspective is further extended to explore intrinsic mixed-state topological order and decoherent symmetry-protected topological phases.
- X.-G. Wen, Quantum Field Theory of Many-body Systems : From the Origin of Sound to an Origin of Light and Electrons., Oxford Graduate Texts (OUP Premium, 2004).
- M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions, Phys. Rev. B 69, 104431 (2004), arXiv:cond-mat/0305505 [cond-mat.str-el] .
- X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011a).
- X. Chen, Z.-C. Gu, and X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems, Phys. Rev. B 84, 235128 (2011b).
- M. B. Hastings, Topological order at nonzero temperature, Physical review letters 107, 210501 (2011).
- C. Wang, A. C. Potter, and T. Senthil, Classification of Interacting Electronic Topological Insulators in Three Dimensions, Science 343, 629 (2014), arXiv:1306.3238 .
- T. Senthil, Symmetry-Protected Topological Phases of Quantum Matter, Annu. Rev. Condens. Matter Phys. 6, 299 (2015).
- C. Wang, A. C. Potter, and T. Senthil, Gapped symmetry preserving surface state for the electron topological insulator, Phys. Rev. B 88, 115137 (2013).
- C. Wang and T. Senthil, Boson topological insulators: A window into highly entangled quantum phases, Phys. Rev. B 87, 235122 (2013).
- C. Wang and T. Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev. B 89, 195124 (2014).
- L. Fidkowski, X. Chen, and A. Vishwanath, Non-abelian topological order on the surface of a 3d topological superconductor from an exactly solved model, Phys. Rev. X 3, 041016 (2013).
- X. Chen, L. Fidkowski, and A. Vishwanath, Symmetry enforced non-abelian topological order at the surface of a topological insulator, Phys. Rev. B 89, 165132 (2014).
- A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of physics 303, 2 (2003).
- S. Bravyi, M. B. Hastings, and S. Michalakis, Topological quantum order: stability under local perturbations, Journal of mathematical physics 51 (2010).
- S. Bravyi and M. B. Hastings, A short proof of stability of topological order under local perturbations, Communications in mathematical physics 307, 609 (2011).
- T.-C. Lu, T. H. Hsieh, and T. Grover, Detecting topological order at finite temperature using entanglement negativity, Physical Review Letters 125, 116801 (2020).
- B. Yoshida, Feasibility of self-correcting quantum memory and thermal stability of topological order, Annals of Physics 326, 2566 (2011).
- J. Wildeboer, T. Iadecola, and D. J. Williamson, Symmetry-protected infinite-temperature quantum memory from subsystem codes, PRX Quantum 3, 020330 (2022).
- S. Michalakis and J. P. Zwolak, Stability of frustration-free hamiltonians, Communications in Mathematical Physics 322, 277 (2013).
- R. Raussendorf, J. Harrington, and K. Goyal, Topological fault-tolerance in cluster state quantum computation, New Journal of Physics 9, 199 (2007).
- Y.-H. Chen and T. Grover, Separability transitions in topological states induced by local decoherence, arXiv preprint arXiv:2309.11879 (2023a).
- Y.-H. Chen and T. Grover, Symmetry-enforced many-body separability transitions, arXiv preprint arXiv:2310.07286 (2023b).
- A. Lavasani and S. Vijay, The stability of gapped quantum matter and error-correction with adiabatic noise, arXiv preprint arXiv:2402.14906 (2024).
- J. Y. Lee, C.-M. Jian, and C. Xu, Quantum criticality under decoherence or weak measurement, PRX Quantum 4, 030317 (2023).
- A. Coser and D. Pérez-García, Classification of phases for mixed states via fast dissipative evolution, Quantum 3, 174 (2019).
- S. Sang, Y. Zou, and T. H. Hsieh, Mixed-state quantum phases: Renormalization and quantum error correction, arXiv preprint arXiv:2310.08639 (2023a).
- Z. Li and R. S. Mong, Replica topological order in quantum mixed states and quantum error correction, arXiv preprint arXiv:2402.09516 (2024).
- J.-H. Zhang, Y. Qi, and Z. Bi, Strange correlation function for average symmetry-protected topological phases, arXiv preprint arXiv:2210.17485 (2022).
- J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence, arXiv preprint arXiv:2210.16323 (2022b).
- V. V. Albert and L. Jiang, Symmetries and conserved quantities in lindblad master equations, Physical Review A 89, 022118 (2014a).
- A. Peres, Separability criterion for density matrices, Physical Review Letters 77, 1413 (1996).
- L. A. Lessa, M. Cheng, and C. Wang, Mixed-state quantum anomaly and multipartite entanglement, arXiv preprint arXiv:2401.17357 (2024).
- R. Sohal and A. Prem, A noisy approach to intrinsically mixed-state topological order, arXiv preprint arXiv:2403.13879 (2024).
- Z. Wang, Z. Wu, and Z. Wang, Intrinsic mixed-state topological order without quantum memory, arXiv preprint arXiv:2307.13758 (2023).
- C. de Groot, A. Turzillo, and N. Schuch, Symmetry protected topological order in open quantum systems, Quantum 6, 856 (2022a).
- Y.-H. Chen and T. Grover, Unconventional topological mixed-state transition and critical phase induced by self-dual coherent errors, arXiv preprint arXiv:2403.06553 (2024).
- R. Ma and C. Wang, Average symmetry-protected topological phases, Physical Review X 13, 031016 (2023).
- J. Y. Lee, Exact calculations of coherent information for toric codes under decoherence: Identifying the fundamental error threshold, arXiv preprint arXiv:2402.16937 (2024).
- T.-C. Lu, Disentangling transitions in topological order induced by boundary decoherence, arXiv preprint arXiv:2404.06514 (2024).
- N. Myerson-Jain, T. L. Hughes, and C. Xu, Decoherence through ancilla anyon reservoirs, arXiv preprint arXiv:2312.04638 (2023).
- K. Su, N. Myerson-Jain, and C. Xu, Conformal field theories generated by chern insulators under quantum decoherence, arXiv preprint arXiv:2305.13410 (2023a).
- J.-H. Zhang, Y. Qi, and Z. Bi, Strange Correlation Function for Average Symmetry-Protected Topological Phases, arXiv e-prints , arXiv:2210.17485 (2022), arXiv:2210.17485 [cond-mat.str-el] .
- Y. Guo and Y. Ashida, Two-dimensional symmetry-protected topological phases and transitions in open quantum systems, arXiv preprint arXiv:2311.12619 (2023).
- Z. Wang and L. Li, Anomaly in open quantum systems and its implications on mixed-state quantum phases, arXiv preprint arXiv:2403.14533 (2024).
- S. Sang and T. H. Hsieh, Stability of mixed-state quantum phases via finite markov length, arXiv preprint arXiv:2404.07251 (2024).
- Y. Zhang and S. Gopalakrishnan, Nonlocal growth of quantum conditional mutual information under decoherence, arXiv preprint arXiv:2402.03439 (2024).
- More generally, weakly entangled states that are all themselves reachable from product states by finite-depth local channels (of which finite-depth local unitaries are a subclass).
- J. Preskill, Lecture notes for physics 229: Quantum information and computation, California Institute of Technology 16, 1 (1998).
- B. Buča and T. Prosen, A note on symmetry reductions of the lindblad equation: transport in constrained open spin chains, New Journal of Physics 14, 073007 (2012).
- V. V. Albert and L. Jiang, Symmetries and conserved quantities in lindblad master equations, Phys. Rev. A 89, 022118 (2014b).
- R. Ma and A. Turzillo, Symmetry protected topological phases of mixed states in the doubled space, arXiv preprint arXiv:2403.13280 (2024).
- Following Ref. [55], we characterize spontaneous symmetry breaking on a finite system by the presence of long-range order as measured by symmetric correlations.
- Assume that UgO(x)Ug†=eiqO(x)subscript𝑈𝑔𝑂𝑥superscriptsubscript𝑈𝑔†superscript𝑒𝑖𝑞𝑂𝑥U_{g}O(x)U_{g}^{\dagger}=e^{iq}O(x)italic_U start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_O ( italic_x ) italic_U start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT = italic_e start_POSTSUPERSCRIPT italic_i italic_q end_POSTSUPERSCRIPT italic_O ( italic_x ) and that Ugρ^=eiαρ^subscript𝑈𝑔^𝜌superscript𝑒𝑖𝛼^𝜌U_{g}\hat{\rho}=e^{i\alpha}\hat{\rho}italic_U start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT over^ start_ARG italic_ρ end_ARG = italic_e start_POSTSUPERSCRIPT italic_i italic_α end_POSTSUPERSCRIPT over^ start_ARG italic_ρ end_ARG. Then Tr(O(x)ρ^O†(x)ρ^)=eiqTr(O(x)ρ^O†(x)ρ^)trace𝑂𝑥^𝜌superscript𝑂†𝑥^𝜌superscript𝑒𝑖𝑞trace𝑂𝑥^𝜌superscript𝑂†𝑥^𝜌\Tr\left(O(x)\hat{\rho}O^{\dagger}(x)\hat{\rho}\right)=e^{iq}\Tr\left(O(x)\hat% {\rho}O^{\dagger}(x)\hat{\rho}\right)roman_Tr ( italic_O ( italic_x ) over^ start_ARG italic_ρ end_ARG italic_O start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( italic_x ) over^ start_ARG italic_ρ end_ARG ) = italic_e start_POSTSUPERSCRIPT italic_i italic_q end_POSTSUPERSCRIPT roman_Tr ( italic_O ( italic_x ) over^ start_ARG italic_ρ end_ARG italic_O start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( italic_x ) over^ start_ARG italic_ρ end_ARG ), which for q≠2π𝑞2𝜋q\neq 2\piitalic_q ≠ 2 italic_π implies Tr(O(x)ρ^O†(x)ρ^)=0trace𝑂𝑥^𝜌superscript𝑂†𝑥^𝜌0\Tr\left(O(x)\hat{\rho}O^{\dagger}(x)\hat{\rho}\right)=0roman_Tr ( italic_O ( italic_x ) over^ start_ARG italic_ρ end_ARG italic_O start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( italic_x ) over^ start_ARG italic_ρ end_ARG ) = 0.
- H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86, 910 (2001).
- R. Raussendorf, S. Bravyi, and J. Harrington, Long-range quantum entanglement in noisy cluster states, Phys. Rev. A 71, 062313 (2005a).
- L. Piroli, G. Styliaris, and J. I. Cirac, Quantum circuits assisted by local operations and classical communication: Transformations and phases of matter, Physical Review Letters 127, 220503 (2021).
- R. Raussendorf, S. Bravyi, and J. Harrington, Long-range quantum entanglement in noisy cluster states, Physical Review A 71, 062313 (2005b).
- T.-C. Lu and S. Vijay, Characterizing long-range entanglement in a mixed state through an emergent order on the entangling surface, Physical Review Research 5, 033031 (2023).
- M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Physical review b 72, 045141 (2005).
- H. Nishimori, Internal energy, specific heat and correlation function of the bond-random ising model, Progress of Theoretical Physics 66, 1169 (1981).
- A. Uhlmann, The “transition probability” in the state space of a∗superscript𝑎a^{*}italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebra, Reports on Mathematical Physics 9, 273 (1976).
- C. Castelnovo and C. Chamon, Topological order and topological entropy in classical systems, Physical Review B 76, 174416 (2007).
- T. Devakul, D. J. Williamson, and Y. You, Classification of subsystem symmetry-protected topological phases, Physical Review B 98, 235121 (2018).
- C. Xu and J. E. Moore, Strong-weak coupling self-duality in the two-dimensional quantum phase transition of p+ i p superconducting arrays, Physical review letters 93, 047003 (2004).
- C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Physical review letters 95, 226801 (2005).
- S. J. Garratt, Z. Weinstein, and E. Altman, Measurements conspire nonlocally to restructure critical quantum states, Physical Review X 13, 021026 (2023).
- F. J. Wegner, Duality in generalized ising models and phase transitions without local order parameters, Journal of Mathematical Physics 12, 2259 (1971).
- C.-M. Jian and X.-L. Qi, Layer construction of 3d topological states and string braiding statistics, Physical Review X 4, 041043 (2014).
- H. Xue, J. Y. Lee, and Y. Bao, Tensor network formulation of symmetry protected topological phases in mixed states, arXiv preprint arXiv:2403.17069 (2024).
- C. de Groot, A. Turzillo, and N. Schuch, Symmetry Protected Topological Order in Open Quantum Systems, Quantum 6, 856 (2022b).
- R. Thorngren, A. Vishwanath, and R. Verresen, Intrinsically gapless topological phases, Physical Review B 104, 075132 (2021).