Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneous network and graph attention auto-encoder for LncRNA-disease association prediction (2405.02354v1)

Published 3 May 2024 in cs.LG, cs.AI, and q-bio.QM

Abstract: The emerging research shows that lncRNAs are associated with a series of complex human diseases. However, most of the existing methods have limitations in identifying nonlinear lncRNA-disease associations (LDAs), and it remains a huge challenge to predict new LDAs. Therefore, the accurate identification of LDAs is very important for the warning and treatment of diseases. In this work, multiple sources of biomedical data are fully utilized to construct characteristics of lncRNAs and diseases, and linear and nonlinear characteristics are effectively integrated. Furthermore, a novel deep learning model based on graph attention automatic encoder is proposed, called HGATELDA. To begin with, the linear characteristics of lncRNAs and diseases are created by the miRNA-lncRNA interaction matrix and miRNA-disease interaction matrix. Following this, the nonlinear features of diseases and lncRNAs are extracted using a graph attention auto-encoder, which largely retains the critical information and effectively aggregates the neighborhood information of nodes. In the end, LDAs can be predicted by fusing the linear and nonlinear characteristics of diseases and lncRNA. The HGATELDA model achieves an impressive AUC value of 0.9692 when evaluated using a 5-fold cross-validation indicating its superior performance in comparison to several recent prediction models. Meanwhile, the effectiveness of HGATELDA in identifying novel LDAs is further demonstrated by case studies. the HGATELDA model appears to be a viable computational model for predicting LDAs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets