Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Learning for Real-World Super-Resolution from Dual and Multiple Zoomed Observations (2405.02171v1)

Published 3 May 2024 in cs.CV

Abstract: In this paper, we consider two challenging issues in reference-based super-resolution (RefSR) for smartphone, (i) how to choose a proper reference image, and (ii) how to learn RefSR in a self-supervised manner. Particularly, we propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms. Firstly, considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the super-resolution (SR) of the lesser zoomed (ultra-wide) image, which gives us a chance to learn a deep network that performs SR from the dual zoomed observations (DZSR). Secondly, for self-supervised learning of DZSR, we take the telephoto image instead of an additional high-resolution image as the supervision information, and select a center patch from it as the reference to super-resolve the corresponding ultra-wide image patch. To mitigate the effect of the misalignment between ultra-wide low-resolution (LR) patch and telephoto ground-truth (GT) image during training, we first adopt patch-based optical flow alignment and then design an auxiliary-LR to guide the deforming of the warped LR features. To generate visually pleasing results, we present local overlapped sliced Wasserstein loss to better represent the perceptual difference between GT and output in the feature space. During testing, DZSR can be directly deployed to super-solve the whole ultra-wide image with the reference of the telephoto image. In addition, we further take multiple zoomed observations to explore self-supervised RefSR, and present a progressive fusion scheme for the effective utilization of reference images. Experiments show that our methods achieve better quantitative and qualitative performance against state-of-the-arts. Codes are available at https://github.com/cszhilu1998/SelfDZSR_PlusPlus.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com