2000 character limit reached
Geometric realizations of the $s$-weak order and its lattice quotients (2405.02092v2)
Published 3 May 2024 in math.CO
Abstract: For an $n$-tuple $s$ of non-negative integers, the $s$-weak order is a lattice structure on $s$-trees, generalizing the weak order on permutations. We first describe the join irreducible elements, the canonical join representations, and the forcing order of the $s$-weak order in terms of combinatorial objects, generalizing the arcs, the non-crossing arc diagrams, and the subarc order for the weak order. We then extend the theory of shards and shard polytopes to construct geometric realizations of the $s$-weak order and all its lattice quotients as polyhedral complexes, generalizing the quotient fans and quotientopes of the weak order.
- Combinatorics of rectangulations: Old and new bijections. Preprint, arXiv:2402.01483, 2024.
- The canonical complex of the weak order. Order, 40(2):349–370, 2023.
- Emily Barnard. The canonical join complex. Electron. J. Combin., 26(1):Paper No. 1.24, 25, 2019.
- Pseudo-permutations. II. Geometry and representation theory. In Discrete models: combinatorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA, pages 123–132 (electronic). Maison Inform. Math. Discrèt. (MIMD), Paris, 2001.
- On simple congruences of the weak order. In preparation, 2023.
- Cayley lattices of finite Coxeter groups are bounded. Adv. in Appl. Math., 33(1):71–94, 2004.
- Cambrian Hopf Algebras. Adv. Math., 311:598–633, 2017.
- The s𝑠sitalic_s-weak order and s𝑠sitalic_s-permutahedra I: combinatorics and lattice structure. Preprint, arXiv:2212.11556, 2022.
- The s𝑠sitalic_s-weak order and s𝑠sitalic_s-permutahedra II: the combinatorial complex of pure intervals. Preprint, arXiv:2309.14261, 2023.
- Rectangulotopes. Preprint, arXiv:2404.17349, 2024.
- Geometry of ν𝜈\nuitalic_ν-Tamari lattices in types A𝐴Aitalic_A and B𝐵Bitalic_B. Trans. Amer. Math. Soc., 371(4):2575–2622, 2019.
- Alan Day. Congruence normality: the characterization of the doubling class of convex sets. Algebra Universalis, 31(3):397–406, 1994.
- On permutation lattices. Math. Social Sci., 27(1):73–89, 1994.
- The facial weak order on hyperplane arrangements. Discrete Comput. Geom., 67(1):166–202, 2022.
- The facial weak order and its lattice quotients. Trans. Amer. Math. Soc., 370(2):1469–1507, 2018.
- Lattice theory of torsion classes: Beyond τ𝜏\tauitalic_τ-tilting theory. Trans. Amer. Math. Soc. Ser. B, 10:542–612, 2023.
- Realizing the s𝑠sitalic_s-permutahedron via flow polytopes. Preprint, arXiv:2307.03474, 2023.
- Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 69–87. Gordon and Breach, New York, 1970.
- Samuele Giraudo. Algebraic and combinatorial structures on pairs of twin binary trees. J. Algebra, 360:115–157, 2012.
- Analyse algébrique d’un scrutin. Math. Inform. Sci. Humaines, (4):9–33, 1963.
- Eric Hanson. A facial order for torsion classes. Preprint, arXiv:2305.06031, 2023.
- Combinatorial generation via permutation languages. II. Lattice congruences. Israel J. Math., 244(1):359–417, 2021.
- The algebra of binary search trees. Theoret. Comput. Sci., 339(1):129–165, 2005.
- Michael Joswig. The Cayley trick for tropical hypersurfaces with a view toward Ricardian economics. In Homological and computational methods in commutative algebra, volume 20 of Springer INdAM Ser., pages 107–128. Springer, Cham, 2017.
- Michael Joswig. Essentials of tropical combinatorics, volume 219 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, [2021] ©2021.
- Pseudo-Permutations I: First Combinatorial and Lattice Properties. 13th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2001), 2001.
- Stephen Lacina. Poset topology of s𝑠sitalic_s-weak order via SB-labelings. J. Comb., 13(3):357–395, 2022.
- Claude Le Conte de Poly-Barbut. Sur les treillis de Coxeter finis. Math. Inform. Sci. Humaines, (125):41–57, 1994.
- Associahedra via spines. Combinatorica, 38(2):443–486, 2018.
- Hopf algebra of the planar binary trees. Adv. Math., 139(2):293–309, 1998.
- The Hopf algebra of diagonal rectangulations. J. Combin. Theory Ser. A, 119(3):788–824, 2012.
- Peter McMullen. Fibre tilings. Mathematika, 50(1-2):1–33 (2005), 2003.
- Vincent Pilaud. Brick polytopes, lattice quotients, and Hopf algebras. J. Combin. Theory Ser. A, 155:418–457, 2018.
- Viviane Pons. Sagemath code and demo for s-weak order and s-permutahedra, 2022. doi:10.5281/zenodo.8380308.
- Viviane Pons. Personnal communications, 2024.
- Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026–1106, 2009.
- Permutrees. Algebraic Combinatorics, 1(2):173–224, 2018.
- Shard polytopes. Int. Math. Res. Not. IMRN, (9):7686–7796, 2023.
- Weak Bruhat order on the set of faces of the permutohedron and the associahedron. J. Algebra, 299(2):648–678, 2006.
- The enumeration of generalized Tamari intervals. Trans. Amer. Math. Soc., 369(7):5219–5239, 2017.
- Faces of generalized permutohedra. Doc. Math., 13:207–273, 2008.
- Quotientopes. Bull. Lond. Math. Soc., 51(3):406–420, 2019.
- Celebrating Loday’s associahedron. Arch. Math. (Basel), 121(5-6):559–601, 2023.
- Nathan Reading. Lattice and order properties of the poset of regions in a hyperplane arrangement. Algebra Universalis, 50(2):179–205, 2003.
- Nathan Reading. Lattice congruences of the weak order. Order, 21(4):315–344, 2004.
- Nathan Reading. Lattice congruences, fans and Hopf algebras. J. Combin. Theory Ser. A, 110(2):237–273, 2005.
- Nathan Reading. Cambrian lattices. Adv. Math., 205(2):313–353, 2006.
- Nathan Reading. Generic rectangulations. European J. Combin., 33(4):610–623, 2012.
- Nathan Reading. Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete Math., 29(2):736–750, 2015.
- Nathan Reading. Lattice theory of the poset of regions. In Lattice theory: special topics and applications. Vol. 2, pages 399–487. Birkhäuser/Springer, Cham, 2016.
- Dov Tamari. Monoides préordonnés et chaînes de Malcev. PhD thesis, Université Paris Sorbonne, 1951.
- Andy Tonks. Relating the associahedron and the permutohedron. In Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), volume 202 of Contemp. Math., pages 33–36. Amer. Math. Soc., Providence, RI, 1997.