Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric realizations of the $s$-weak order and its lattice quotients (2405.02092v2)

Published 3 May 2024 in math.CO

Abstract: For an $n$-tuple $s$ of non-negative integers, the $s$-weak order is a lattice structure on $s$-trees, generalizing the weak order on permutations. We first describe the join irreducible elements, the canonical join representations, and the forcing order of the $s$-weak order in terms of combinatorial objects, generalizing the arcs, the non-crossing arc diagrams, and the subarc order for the weak order. We then extend the theory of shards and shard polytopes to construct geometric realizations of the $s$-weak order and all its lattice quotients as polyhedral complexes, generalizing the quotient fans and quotientopes of the weak order.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Combinatorics of rectangulations: Old and new bijections. Preprint, arXiv:2402.01483, 2024.
  2. The canonical complex of the weak order. Order, 40(2):349–370, 2023.
  3. Emily Barnard. The canonical join complex. Electron. J. Combin., 26(1):Paper No. 1.24, 25, 2019.
  4. Pseudo-permutations. II. Geometry and representation theory. In Discrete models: combinatorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA, pages 123–132 (electronic). Maison Inform. Math. Discrèt. (MIMD), Paris, 2001.
  5. On simple congruences of the weak order. In preparation, 2023.
  6. Cayley lattices of finite Coxeter groups are bounded. Adv. in Appl. Math., 33(1):71–94, 2004.
  7. Cambrian Hopf Algebras. Adv. Math., 311:598–633, 2017.
  8. The s𝑠sitalic_s-weak order and s𝑠sitalic_s-permutahedra I: combinatorics and lattice structure. Preprint, arXiv:2212.11556, 2022.
  9. The s𝑠sitalic_s-weak order and s𝑠sitalic_s-permutahedra II: the combinatorial complex of pure intervals. Preprint, arXiv:2309.14261, 2023.
  10. Rectangulotopes. Preprint, arXiv:2404.17349, 2024.
  11. Geometry of ν𝜈\nuitalic_ν-Tamari lattices in types A𝐴Aitalic_A and B𝐵Bitalic_B. Trans. Amer. Math. Soc., 371(4):2575–2622, 2019.
  12. Alan Day. Congruence normality: the characterization of the doubling class of convex sets. Algebra Universalis, 31(3):397–406, 1994.
  13. On permutation lattices. Math. Social Sci., 27(1):73–89, 1994.
  14. The facial weak order on hyperplane arrangements. Discrete Comput. Geom., 67(1):166–202, 2022.
  15. The facial weak order and its lattice quotients. Trans. Amer. Math. Soc., 370(2):1469–1507, 2018.
  16. Lattice theory of torsion classes: Beyond τ𝜏\tauitalic_τ-tilting theory. Trans. Amer. Math. Soc. Ser. B, 10:542–612, 2023.
  17. Realizing the s𝑠sitalic_s-permutahedron via flow polytopes. Preprint, arXiv:2307.03474, 2023.
  18. Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pages 69–87. Gordon and Breach, New York, 1970.
  19. Samuele Giraudo. Algebraic and combinatorial structures on pairs of twin binary trees. J. Algebra, 360:115–157, 2012.
  20. Analyse algébrique d’un scrutin. Math. Inform. Sci. Humaines, (4):9–33, 1963.
  21. Eric Hanson. A facial order for torsion classes. Preprint, arXiv:2305.06031, 2023.
  22. Combinatorial generation via permutation languages. II. Lattice congruences. Israel J. Math., 244(1):359–417, 2021.
  23. The algebra of binary search trees. Theoret. Comput. Sci., 339(1):129–165, 2005.
  24. Michael Joswig. The Cayley trick for tropical hypersurfaces with a view toward Ricardian economics. In Homological and computational methods in commutative algebra, volume 20 of Springer INdAM Ser., pages 107–128. Springer, Cham, 2017.
  25. Michael Joswig. Essentials of tropical combinatorics, volume 219 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, [2021] ©2021.
  26. Pseudo-Permutations I: First Combinatorial and Lattice Properties. 13th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2001), 2001.
  27. Stephen Lacina. Poset topology of s𝑠sitalic_s-weak order via SB-labelings. J. Comb., 13(3):357–395, 2022.
  28. Claude Le Conte de Poly-Barbut. Sur les treillis de Coxeter finis. Math. Inform. Sci. Humaines, (125):41–57, 1994.
  29. Associahedra via spines. Combinatorica, 38(2):443–486, 2018.
  30. Hopf algebra of the planar binary trees. Adv. Math., 139(2):293–309, 1998.
  31. The Hopf algebra of diagonal rectangulations. J. Combin. Theory Ser. A, 119(3):788–824, 2012.
  32. Peter McMullen. Fibre tilings. Mathematika, 50(1-2):1–33 (2005), 2003.
  33. Vincent Pilaud. Brick polytopes, lattice quotients, and Hopf algebras. J. Combin. Theory Ser. A, 155:418–457, 2018.
  34. Viviane Pons. Sagemath code and demo for s-weak order and s-permutahedra, 2022. doi:10.5281/zenodo.8380308.
  35. Viviane Pons. Personnal communications, 2024.
  36. Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026–1106, 2009.
  37. Permutrees. Algebraic Combinatorics, 1(2):173–224, 2018.
  38. Shard polytopes. Int. Math. Res. Not. IMRN, (9):7686–7796, 2023.
  39. Weak Bruhat order on the set of faces of the permutohedron and the associahedron. J. Algebra, 299(2):648–678, 2006.
  40. The enumeration of generalized Tamari intervals. Trans. Amer. Math. Soc., 369(7):5219–5239, 2017.
  41. Faces of generalized permutohedra. Doc. Math., 13:207–273, 2008.
  42. Quotientopes. Bull. Lond. Math. Soc., 51(3):406–420, 2019.
  43. Celebrating Loday’s associahedron. Arch. Math. (Basel), 121(5-6):559–601, 2023.
  44. Nathan Reading. Lattice and order properties of the poset of regions in a hyperplane arrangement. Algebra Universalis, 50(2):179–205, 2003.
  45. Nathan Reading. Lattice congruences of the weak order. Order, 21(4):315–344, 2004.
  46. Nathan Reading. Lattice congruences, fans and Hopf algebras. J. Combin. Theory Ser. A, 110(2):237–273, 2005.
  47. Nathan Reading. Cambrian lattices. Adv. Math., 205(2):313–353, 2006.
  48. Nathan Reading. Generic rectangulations. European J. Combin., 33(4):610–623, 2012.
  49. Nathan Reading. Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete Math., 29(2):736–750, 2015.
  50. Nathan Reading. Lattice theory of the poset of regions. In Lattice theory: special topics and applications. Vol. 2, pages 399–487. Birkhäuser/Springer, Cham, 2016.
  51. Dov Tamari. Monoides préordonnés et chaînes de Malcev. PhD thesis, Université Paris Sorbonne, 1951.
  52. Andy Tonks. Relating the associahedron and the permutohedron. In Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), volume 202 of Contemp. Math., pages 33–36. Amer. Math. Soc., Providence, RI, 1997.

Summary

We haven't generated a summary for this paper yet.