Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Quantum Algorithms for Differential Equations on a Noisy Quantum Computer (2405.02069v2)

Published 3 May 2024 in quant-ph

Abstract: The role of differential equations (DEs) in science and engineering is of paramount importance, as they provide the mathematical framework for a multitude of natural phenomena. Since quantum computers promise significant advantages over classical computers, quantum algorithms for the solution of DEs have received a lot of attention. Particularly interesting are algorithms that offer advantages in the current noisy intermediate scale quantum (NISQ) era, characterized by small and error-prone systems. We consider a framework of variational quantum algorithms, quantum circuit learning (QCL), in conjunction with derivation methods, in particular the parameter shift rule, to solve DEs. As these algorithms were specifically designed for NISQ computers, we analyze their applicability on NISQ devices by implementing QCL on an IBM quantum computer. Our analysis of QCL without the parameter shift rule shows that we can successfully learn different functions with three-qubit circuits. However, the hardware errors accumulate with increasing number of qubits and thus only a fraction of the qubits available on the current quantum systems can be effectively used. We further show that it is possible to determine derivatives of the learned functions using the parameter shift rule on the IBM hardware. The parameter shift rule results in higher errors which limits its execution to low-order derivatives. Despite these limitations, we solve a first-order DE on the IBM quantum computer. We further explore the advantages of using multiple qubits in QCL by learning different functions simultaneously and demonstrate the solution of a coupled differential equation on a simulator.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com