Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schwarz Methods for Nonlocal Problems (2405.01905v1)

Published 3 May 2024 in math.NA and cs.NA

Abstract: The first domain decomposition methods for partial differential equations were already developed in 1870 by H. A. Schwarz. Here we consider a nonlocal Dirichlet problem with variable coefficients, where a nonlocal diffusion operator is used. We find that domain decomposition methods like the so-called Schwarz methods seem to be a natural way to solve these nonlocal problems. In this work we show the convergence for nonlocal problems, where specific symmetric kernels are employed, and present the implementation of the multiplicative and additive Schwarz algorithms in the above mentioned nonlocal setting.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. A domain decomposition scheme for couplings between local and nonlocal equations. Computational Methods in Applied Mathematics, (0), 2023.
  2. D. Brockmann. Anomalous diffusion and the structure of human transportation networks. The European Physical Journal Special Topics, 157:173–189, 2008.
  3. Image denoising methods. A new nonlocal principle. SIAM review, 52(1):113–147, 2010.
  4. An energy-based coupling approach to nonlocal interface problems. Computers & Fluids, 207:104593, 2020.
  5. M. D’Elia and C. Glusa. A fractional model for anomalous diffusion with increased variability: Analysis, algorithms and applications to interface problems. Numerical Methods for Partial Differential Equations, 38(6):2084–2103, 2022.
  6. M. D’Elia and M. Gulian. Analysis of anisotropic nonlocal diffusion models: Well-posedness of fractional problems for anomalous transport. arXiv preprint arXiv:2101.04289, 2021.
  7. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM review, 54(4):667–696, 2012.
  8. Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes. Computational Methods in Applied Mathematics, 17(4):707–722, 2017.
  9. A cookbook for approximating Euclidean balls and for quadrature rules in finite element methods for nonlocal problems. Mathematical Models and Methods in Applied Sciences, 31(08):1505–1567, 2021.
  10. A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal mechanics. Journal of Peridynamics and Nonlocal Modeling, pages 1–50, 2021.
  11. Bilevel parameter learning for nonlocal image denoising models. Journal of Mathematical Imaging and Vision, 63(6):753–775, 2021.
  12. An asymptotically compatible coupling formulation for nonlocal interface problems with jumps. SIAM Journal on Scientific Computing, 45(3):A1359–A1384, 2023.
  13. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations, volume 95. Springer, 2016.
  14. Peridynamics review. Mathematics and Mechanics of Solids, 24(11):3714–3739, 2019.
  15. A scalable domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type. arXiv preprint arXiv:2306.00094, 2023.
  16. nlfem: A flexible 2d FEM Code for Nonlocal Convection-Diffusion and Mechanics, 2022.
  17. P.-L. Lions. On the Schwarz alternating method. II. Domain decomposition methods, 628:47–70, 1989.
  18. P.-L. Lions. On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. In Third international symposium on domain decomposition methods for partial differential equations, volume 6, pages 202–223. SIAM Philadelphia, 1990.
  19. P.-L. Lions et al. On the Schwarz alternating method. I. In First international symposium on domain decomposition methods for partial differential equations, volume 1, page 42. Paris, France, 1988.
  20. T. Mathew. Domain decomposition methods for the numerical solution of partial differential equations, volume 61. Springer Science & Business Media, 2008.
  21. R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics reports, 339(1):1–77, 2000.
  22. Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.
  23. Shape optimization for interface identification in nonlocal models, 2022.
  24. H. A. Schwarz. Ueber einige Abbildungsaufgaben. 1869.
  25. H. A. Schwarz. Ueber einen Grenzübergang durch alternirendes Verfahren. Zürcher u. Furrer, 1870.
  26. S. A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175–209, 2000.
  27. Fractional modeling in action: A survey of nonlocal models for subsurface transport, turbulent flows, and anomalous materials. Journal of Peridynamics and Nonlocal Modeling, pages 1–68, 2022.
  28. A. Toselli and O. Widlund. Domain decomposition methods-algorithms and theory, volume 34. Springer Science & Business Media, 2004.
  29. C. Vollmann. Nonlocal models with truncated interaction kernels - analysis, finite element methods and shape optimization. PhD thesis, Universität Trier, 2019.
  30. M. Vu. The Nonlocal Neumann Problem. PhD thesis, Universität Trier, 2023.
  31. A FETI approach to domain decomposition for meshfree discretizations of nonlocal problems. Computer Methods in Applied Mechanics and Engineering, 387:114148, 2021.

Summary

We haven't generated a summary for this paper yet.