Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Requirements-driven Slicing of Simulink Models Using LLMs (2405.01695v1)

Published 2 May 2024 in cs.SE

Abstract: Model slicing is a useful technique for identifying a subset of a larger model that is relevant to fulfilling a given requirement. Notable applications of slicing include reducing inspection effort when checking design adequacy to meet requirements of interest and when conducting change impact analysis. In this paper, we present a method based on LLMs for extracting model slices from graphical Simulink models. Our approach converts a Simulink model into a textual representation, uses an LLM to identify the necessary Simulink blocks for satisfying a specific requirement, and constructs a sound model slice that incorporates the blocks identified by the LLM. We explore how different levels of granularity (verbosity) in transforming Simulink models into textual representations, as well as the strategy used to prompt the LLM, impact the accuracy of the generated slices. Our preliminary findings suggest that prompts created by textual representations that retain the syntax and semantics of Simulink blocks while omitting visual rendering information of Simulink models yield the most accurate slices. Furthermore, the chain-of-thought and zero-shot prompting strategies result in the largest number of accurate model slices produced by our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. F. Tip, “A survey of program slicing techniques,” J. Program. Lang., vol. 3, 1994.
  2. T. Binalialhag, J. Hassine, and D. Amyot, “Static slicing of use case maps requirements models,” Softw. Syst. Model., vol. 18, no. 4, p. 2465–2505, 2019.
  3. S. Kan and Z. Huang, “Detecting safety-related components in statecharts through traceability and model slicing,” Software: Practice and Experience, vol. 48, 2017.
  4. G. Taentzer, T. Kehrer, C. Pietsch, and U. Kelter, “A formal framework for incremental model slicing,” in Fundamental Approaches to Software Engineering.   Springer International Publishing, 2018, pp. 3–20.
  5. M. Rahim, M. Boukala-Ioualalen, and A. Hammad, “Hierarchical colored petri nets for the verification of sysml designs- activity-based slicing approach,” in Advances in Computing Systems and Applications.   Springer International Publishing, 2021.
  6. F. Wang, Z.-B. Yang, Z.-Q. Huang, C.-W. Liu, Y. Zhou, J.-P. Bodeveix, and M. Filali, “An approach to generate the traceability between restricted natural language requirements and aadl models,” IEEE Transactions on Reliability, vol. 69, no. 1, pp. 154–173, 2020.
  7. S. Nejati, M. Sabetzadeh, C. Arora, L. C. Briand, and F. Mandoux, “Automated change impact analysis between sysml models of requirements and design,” in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering.   Association for Computing Machinery, 2016, p. 242–253.
  8. I. Hajri, A. Goknil, L. C. Briand, and T. Stephany, “Change impact analysis for evolving configuration decisions in product line use case models,” Journal of Systems and Software, vol. 139, pp. 211–237, 2018.
  9. C. Arora, M. Sabetzadeh, A. Goknil, L. C. Briand, and F. Zimmer, “Change impact analysis for natural language requirements: An nlp approach,” in 2015 IEEE 23rd International Requirements Engineering Conference (RE), 2015, pp. 6–15.
  10. M. Alenazi, N. Niu, and J. Savolainen, “A novel approach to tracing safety requirements and state-based design models,” in Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering.   Association for Computing Machinery, 2020, p. 848–860.
  11. D. Falessi, S. Nejati, M. Sabetzadeh, L. Briand, and A. Messina, “Safeslice: a model slicing and design safety inspection tool for sysml,” 2011, pp. 460–463.
  12. T. Zhao, Q. Cao, and Q. Sun, “An improved approach to traceability recovery based on word embeddings,” in 2017 24th Asia-Pacific Software Engineering Conference (APSEC), 2017, pp. 81–89.
  13. J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced software traceability using deep learning techniques,” in 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), 2017, pp. 3–14.
  14. OpenAI, “Chatgpt,” 2023. [Online]. Available: https://openai.com/chatgpt/
  15. A. Mavridou, H. Bourbouh, D. Giannakopoulou, T. Pressburger, M. Hejase, P.-L. Garoche, and J. Schumann, “The ten lockheed martin cyber-physical challenges: Formalized, analyzed, and explained,” in 2020 IEEE 28th International Requirements Engineering Conference (RE), 2020, pp. 300–310.
  16. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018. [Online]. Available: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
  17. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in NAACL-HLT, 2019.
  18. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” 2020.
  19. W. Hariri, “Unlocking the potential of ChatGPT: A comprehensive exploration of its applications,” Technology, vol. 15, no. 2, 2023.
  20. P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing,” vol. 55, no. 9, 2023.
  21. E. Griebl, B. Fein, F. Obermuller, G. Fraser, and R. Just, “On the applicability of language models to block-based programs,” in 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).   IEEE Computer Society, 2023, pp. 2374–2386.
  22. S. Nejati, M. Sabetzadeh, D. Falessi, L. Briand, and T. Coq, “A sysml-based approach to traceability management and design slicing in support of safety certification: Framework, tool support, and case studies,” Information and Software Technology, vol. 54, no. 6, pp. 569–590, 2012.
  23. A. Goknil, I. Kurtev, K. van den Berg, and W. Spijkerman, “Change impact analysis for requirements: A metamodeling approach,” Information and Software Technology, vol. 56, no. 8, pp. 950–972, 2014.
  24. S. Nejati, K. Gaaloul, C. Menghi, L. C. Briand, S. Foster, and D. Wolfe, “Evaluating model testing and model checking for finding requirements violations in simulink models,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2019.   New York, NY, USA: Association for Computing Machinery, 2019, p. 1015–1025.
  25. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking using satisfiability solving,” Formal Methods in System Design, vol. 19, no. 1, pp. 7–34, 2001.
  26. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about hybrid automata?” Journal of computer and system sciences, vol. 57, no. 1, pp. 94–124, 1998.
  27. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,” Theoretical computer science, vol. 138, no. 1, pp. 3–34, 1995.
  28. R. Alur, “Formal verification of hybrid systems,” in International Conference on Embedded Software (EMSOFT), 2011, pp. 273–278.
  29. R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Test generation and test prioritization for simulink models with dynamic behavior,” IEEE Trans. Software Eng., vol. 45, no. 9, pp. 919–944, 2019.
  30. R. Matinnejad, S. Nejati, and L. C. Briand, “Automated testing of hybrid simulink/stateflow controllers: industrial case studies,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, E. Bodden, W. Schäfer, A. van Deursen, and A. Zisman, Eds.   ACM, 2017, pp. 938–943.
  31. R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Mil testing of highly configurable continuous controllers: scalable search using surrogate models,” in ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, I. Crnkovic, M. Chechik, and P. Grünbacher, Eds.   ACM, 2014, pp. 163–174.
  32. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of vacuity in ACTL formulaas,” in Computer Aided Verification, 9th International Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, ser. Lecture Notes in Computer Science, O. Grumberg, Ed., vol. 1254.   Springer, 1997, pp. 279–290.
  33. B. Chen, K. Chen, S. Hassani, Y. Yang, D. Amyot, L. Lessard, G. Mussbacher, M. Sabetzadeh, and D. Varro, “On the use of gpt-4 for creating goal models: An exploratory study,” 09 2023, pp. 262–271.
Citations (2)

Summary

We haven't generated a summary for this paper yet.