Celestial strings: field theory, conformally soft limits, and mapping the worldsheet onto the celestial sphere (2405.01643v2)
Abstract: We compute the celestial correlators corresponding to tree-level 5-gluon amplitudes in the type I superstring theory. Since celestial correlation functions are obtained by integrating over the full range of energies, there is no obvious analog of the $\alpha' \to 0$ limit in this basis. This is manifestly shown by a factorization of the $\alpha '$ dependence in the celestial string amplitudes. Consequently, the question arises as to how the field theory limit is recovered from string theory in the celestial basis. This problem has been addressed in the literature for the case of 4-gluon amplitudes at tree level, where the forward scattering limit of the stringy factor was identified as a limit in which celestial Yang-Mills 4-point function is recovered. Here, we extend the analysis to the case with five gluons, for which the string moduli space allows for more types of limits, thus allowing to investigate this aspect in more detail. Based on celestial data only, we study the regime in which one arrives at the correct celestial field theory limit. We also study other properties of the celestial string amplitudes, namely, the conformally soft theorem, effective field theory expansion in the conformal basis, and a map that arises in the regime of high-energy/large-scaling dimension that connects the punctured string worldsheet to the insertion of primary operators in the celestial CFT for the massless $n$-point string amplitude.
- A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
- J. de Boer and S. N. Solodukhin, “A Holographic reduction of Minkowski space-time,” Nucl. Phys. B 665 (2003) 545–593, arXiv:hep-th/0303006.
- C. Cheung, A. de la Fuente, and R. Sundrum, “4D scattering amplitudes and asymptotic symmetries from 2D CFT,” JHEP 01 (2017) 112, arXiv:1609.00732 [hep-th].
- S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D 96 (2017) no. 6, 065026, arXiv:1701.00049 [hep-th].
- S. Pasterski and S.-H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96 (2017) no. 6, 065022, arXiv:1705.01027 [hep-th].
- S. Pasterski, S.-H. Shao, and A. Strominger, “Gluon Amplitudes as 2d Conformal Correlators,” Phys. Rev. D 96 (2017) no. 8, 085006, arXiv:1706.03917 [hep-th].
- A. Schreiber, A. Volovich, and M. Zlotnikov, “Tree-level gluon amplitudes on the celestial sphere,” Phys. Lett. B 781 (2018) 349–357, arXiv:1711.08435 [hep-th].
- L. Donnay, A. Puhm, and A. Strominger, “Conformally Soft Photons and Gravitons,” JHEP 01 (2019) 184, arXiv:1810.05219 [hep-th].
- A. Puhm, “Conformally Soft Theorem in Gravity,” JHEP 09 (2020) 130, arXiv:1905.09799 [hep-th].
- K. Costello, N. M. Paquette, and A. Sharma, “Top-Down Holography in an Asymptotically Flat Spacetime,” Phys. Rev. Lett. 130 (2023) no. 6, 061602, arXiv:2208.14233 [hep-th].
- K. Costello and N. M. Paquette, “Celestial holography meets twisted holography: 4d amplitudes from chiral correlators,” JHEP 10 (2022) 193, arXiv:2201.02595 [hep-th].
- K. Costello, N. M. Paquette, and A. Sharma, “Burns space and holography,” JHEP 10 (2023) 174, arXiv:2306.00940 [hep-th].
- M. Pate, A.-M. Raclariu, A. Strominger, and E. Y. Yuan, “Celestial Operator Products of Gluons and Gravitons,” arXiv:1910.07424 [hep-th].
- A. Strominger, “Asymptotic Symmetries of Yang-Mills Theory,” JHEP 07 (2014) 151, arXiv:1308.0589 [hep-th].
- A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, arXiv:1312.2229 [hep-th].
- A. Fiorucci, D. Grumiller, and R. Ruzziconi, “Logarithmic celestial conformal field theory,” Phys. Rev. D 109 (2024) no. 2, L021902, arXiv:2305.08913 [hep-th].
- S. Agrawal, L. Donnay, K. Nguyen, and R. Ruzziconi, “Logarithmic soft graviton theorems from superrotation Ward identities,” arXiv:2309.11220 [hep-th].
- S. Stieberger and T. R. Taylor, “Strings on Celestial Sphere,” Nucl. Phys. B935 (2018) 388–411, arXiv:1806.05688 [hep-th].
- T. Adamo, L. Mason, and A. Sharma, “Celestial amplitudes and conformal soft theorems,” Class. Quant. Grav. 36 (2019) no. 20, 205018, arXiv:1905.09224 [hep-th].
- E. Casali and A. Sharma, “Celestial double copy from the worldsheet,” JHEP 05 (2021) 157, arXiv:2011.10052 [hep-th].
- T. Adamo, W. Bu, E. Casali, and A. Sharma, “Celestial operator products from the worldsheet,” JHEP 06 (2022) 052, arXiv:2111.02279 [hep-th].
- W. Bu, “Supersymmetric celestial OPEs and soft algebras from the ambitwistor string worldsheet,” Phys. Rev. D 105 (2022) no. 12, 126029, arXiv:2111.15584 [hep-th].
- A. Guevara, “Celestial OPE blocks,” arXiv:2108.12706 [hep-th].
- H. Jiang, “Celestial OPEs and w1+∞ algebra from worldsheet in string theory,” JHEP 01 (2022) 101, arXiv:2110.04255 [hep-th].
- L. Donnay, G. Giribet, H. González, A. Puhm, and F. Rojas, “Celestial open strings at one-loop,” JHEP 10 (2023) 047, arXiv:2307.03551 [hep-th].
- S. Stieberger, T. R. Taylor, and B. Zhu, “Carrollian Amplitudes from Strings,” arXiv:2402.14062 [hep-th].
- S. Stieberger and T. R. Taylor, “Amplitude for N-Gluon Superstring Scattering,” Phys. Rev. Lett. 97 (2006) 211601, arXiv:hep-th/0607184.
- C. R. Mafra, O. Schlotterer, and S. Stieberger, “Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation,” Nucl. Phys. B 873 (2013) 419–460, arXiv:1106.2645 [hep-th].
- S. J. Parke and T. R. Taylor, “An Amplitude for n𝑛nitalic_n Gluon Scattering,” Phys. Rev. Lett. 56 (1986) 2459.
- F. A. Berends and W. T. Giele, “Recursive Calculations for Processes with n Gluons,” Nucl. Phys. B 306 (1988) 759–808.
- M. B. Green, J. H. Schwarz, and L. Brink, “N=4 Yang-Mills and N=8 Supergravity as Limits of String Theories,” Nucl. Phys. B198 (1982) 474–492.
- S. Stieberger and T. R. Taylor, “Symmetries of Celestial Amplitudes,” Phys. Lett. B 793 (2019) 141–143, arXiv:1812.01080 [hep-th].
- S. Stieberger and T. R. Taylor, “Multi-Gluon Scattering in Open Superstring Theory,” Phys. Rev. D 74 (2006) 126007, arXiv:hep-th/0609175.
- W. Fan, A. Fotopoulos, and T. R. Taylor, “Soft Limits of Yang-Mills Amplitudes and Conformal Correlators,” JHEP 05 (2019) 121, arXiv:1903.01676 [hep-th].
- R. C. Brower, H. Nastase, H. J. Schnitzer, and C.-I. Tan, “Implications of multi-Regge limits for the Bern-Dixon-Smirnov conjecture,” Nucl. Phys. B 814 (2009) 293–326, arXiv:0801.3891 [hep-th].
- G. Veneziano, “Construction of a crossing - symmetric, Regge behaved amplitude for linearly rising trajectories,” Nuovo Cim. A 57 (1968) 190–197.
- J. Scherk, “Zero-slope limit of the dual resonance model,” Nucl. Phys. B 31 (1971) 222–234.
- A. Neveu and J. Scherk, “Connection between Yang-Mills fields and dual models,” Nucl. Phys. B36 (1972) 155–161.
- J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12, 2007.
- C. B. Thorn, “Subcritical String and Large N QCD,” Phys. Rev. D 78 (2008) 085022, arXiv:0808.0458 [hep-th].
- F. Rojas and C. B. Thorn, “The Open String Regge Trajectory and Its Field Theory Limit,” Phys. Rev. D 84 (2011) 026006, arXiv:1105.3967 [hep-th].
- F. Rojas, “Type 0 open string amplitudes and the tensionless limit,” Phys. Rev. D 90 (2014) no. 12, 126008, arXiv:1311.4535 [hep-th].
- D. J. Gross and P. F. Mende, “String Theory Beyond the Planck Scale,” Nucl. Phys. B 303 (1988) 407–454.
- D. J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” Phys. Lett. B 197 (1987) 129–134.
- F. Cachazo, S. He, and E. Y. Yuan, “Scattering of Massless Particles: Scalars, Gluons and Gravitons,” JHEP 07 (2014) 033, arXiv:1309.0885 [hep-th].
- F. Cachazo, S. He, and E. Y. Yuan, “Scattering of Massless Particles in Arbitrary Dimensions,” Phys. Rev. Lett. 113 (2014) no. 17, 171601, arXiv:1307.2199 [hep-th].
- F. Cachazo, S. He, and E. Y. Yuan, “Scattering equations and Kawai-Lewellen-Tye orthogonality,” Phys. Rev. D 90 (2014) no. 6, 065001, arXiv:1306.6575 [hep-th].
- C. Cardona and C. Kalousios, “Elimination and recursions in the scattering equations,” Phys. Lett. B 756 (2016) 180–187, arXiv:1511.05915 [hep-th].
- L. Dolan and P. Goddard, “General Solution of the Scattering Equations,” JHEP 10 (2016) 149, arXiv:1511.09441 [hep-th].
- P. Mitra, “Celestial Conformal Primaries in Effective Field Theories,” arXiv:2402.09256 [hep-th].
- L. Ren, M. Spradlin, A. Yelleshpur Srikant, and A. Volovich, “On effective field theories with celestial duals,” JHEP 08 (2022) 251, arXiv:2206.08322 [hep-th].
- N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08 (2021) 062, arXiv:2012.04208 [hep-th].