Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Simons Observatory: Combining cross-spectral foreground cleaning with multitracer $B$-mode delensing for improved constraints on inflation (2405.01621v2)

Published 2 May 2024 in astro-ph.CO

Abstract: The Simons Observatory (SO), due to start full science operations in early 2025, aims to set tight constraints on inflationary physics by inferring the tensor-to-scalar ratio $r$ from measurements of CMB polarization $B$-modes. Its nominal design targets a precision $\sigma(r=0) \leq 0.003$ without delensing. Achieving this goal and further reducing uncertainties requires the mitigation of other sources of large-scale $B$-modes such as Galactic foregrounds and weak gravitational lensing. We present an analysis pipeline aiming to estimate $r$ by including delensing within a cross-spectral likelihood, and demonstrate it on SO-like simulations. Lensing $B$-modes are synthesised using internal CMB lensing reconstructions as well as Planck-like CIB maps and LSST-like galaxy density maps. This $B$-mode template is then introduced into SO's power-spectrum-based foreground-cleaning algorithm by extending the likelihood function to include all auto- and cross-spectra between the lensing template and the SAT $B$-modes. Within this framework, we demonstrate the equivalence of map-based and cross-spectral delensing and use it to motivate an optimized pixel-weighting scheme for power spectrum estimation. We start by validating our pipeline in the simplistic case of uniform foreground spectral energy distributions (SEDs). In the absence of primordial $B$-modes, $\sigma(r)$ decreases by 37% as a result of delensing. Tensor modes at the level of $r=0.01$ are successfully detected by our pipeline. Even with more realistic foreground models including spatial variations in the dust and synchrotron spectral properties, we obtain unbiased estimates of $r$ by employing the moment-expansion method. In this case, delensing-related improvements range between 27% and 31%. These results constitute the first realistic assessment of the delensing performance at SO's nominal sensitivity level. (Abridged)

Definition Search Book Streamline Icon: https://streamlinehq.com
References (81)
  1. Planck Collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astronomy & Astrophysics 641, A1 (2020a), arXiv: 1807.06205.
  2. M. Kamionkowski, A. Kosowsky, and A. Stebbins, Statistics of Cosmic Microwave Background Polarization, Physical Review D 55, 7368 (1997), arXiv:astro-ph/9611125.
  3. U. Seljak and M. Zaldarriaga, Signature of Gravity Waves in the Polarization of the Microwave Background, Physical Review Letters 78, 2054 (1997).
  4. M. Tristram et al., Improved limits on the tensor-to-scalar ratio using BICEP and Planck, Physical Review D 105, 083524 (2022), arXiv:2112.07961 [astro-ph].
  5. A. Ijjas and P. J. Steinhardt, Bouncing Cosmology made simple, Classical and Quantum Gravity 35, 135004 (2018), arXiv:1803.01961 [astro-ph, physics:gr-qc].
  6. T. S. O. Collaboration, The Simons Observatory: Science goals and forecasts, Journal of Cosmology and Astroparticle Physics 2019 (02), 056, arXiv:1808.07445 [astro-ph].
  7. T. S. O. Collaboration, The Simons Observatory: Astro2020 Decadal Project Whitepaper (2019b), number: arXiv:1907.08284 arXiv:1907.08284 [astro-ph].
  8. K. Abazajian et al., CMB-S4: Forecasting Constraints on Primordial Gravitational Waves, The Astrophysical Journal 926, 54 (2022).
  9. LiteBIRD Collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey, Progress of Theoretical and Experimental Physics 2023, 042F01 (2023), arXiv:2202.02773 [astro-ph].
  10. A. A. Starobinskii, Spectrum of relict gravitational radiation and the early state of the universe, Soviet Journal of Experimental and Theoretical Physics Letters 30, 682 (1979), ADS Bibcode: 1979JETPL..30..682S.
  11. A. Lewis and A. Challinor, Weak Gravitational Lensing of the CMB, Physics Reports 429, 1 (2006), arXiv:astro-ph/0601594.
  12. D. Hanson et al., Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope, Physical Review Letters 111, 141301 (2013), arXiv:1307.5830 [astro-ph].
  13. T. Namikawa et al., The Simons Observatory: Constraining inflationary gravitational waves with multi-tracer B-mode delensing, Physical Review D 105, 023511 (2022), arXiv:2110.09730 [astro-ph].
  14. BICEP/Keck and SPTpol Collaborations, A Demonstration of Improved Constraints on Primordial Gravitational Waves with Delensing, Physical Review D 103, 022004 (2021), arXiv:2011.08163 [astro-ph].
  15. S. K. Choi and L. A. Page, Polarized galactic synchrotron and dust emission and their correlation, Journal of Cosmology and Astroparticle Physics 2015 (12), 020, arXiv:1509.05934 [astro-ph].
  16. N. Krachmalnicoff et al., Characterization of foreground emission at degree angular scale for CMB B-modes observations. Thermal Dust and Synchrotron signal from Planck and WMAP data, Astronomy & Astrophysics 588, A65 (2016), arXiv:1511.00532 [astro-ph].
  17. J. Delabrouille and J.-F. Cardoso, Diffuse source separation in CMB observations (2007), arXiv:astro-ph/0702198.
  18. S. M. Leach et al., Component separation methods for the Planck mission, Astronomy & Astrophysics 491, 597 (2008), arXiv:0805.0269 [astro-ph].
  19. K. Wolz et al., The Simons Observatory: pipeline comparison and validation for large-scale B-modes (2023), arXiv:2302.04276 [astro-ph].
  20. M. Tegmark, Removing real-world foregrounds from CMB maps, The Astrophysical Journal 502, 1 (1998), arXiv:astro-ph/9712038.
  21. J. Chluba, J. C. Hill, and M. H. Abitbol, Rethinking CMB foregrounds: systematic extension of foreground parameterizations, Monthly Notices of the Royal Astronomical Society 472, 1195 (2017), arXiv:1701.00274 [astro-ph].
  22. S. Azzoni et al., A minimal power-spectrum-based moment expansion for CMB B-mode searches, Journal of Cosmology and Astroparticle Physics 2021 (05), 047, arXiv:2011.11575 [astro-ph].
  23. A. Challinor and G. Chon, Geometry of weak lensing of CMB polarization, Physical Review D 66, 127301 (2002), arXiv:astro-ph/0301064.
  24. A. Lewis, A. Challinor, and N. Turok, Analysis of CMB polarization on an incomplete sky, Physical Review D 65, 023505 (2001), arXiv:astro-ph/0106536.
  25. H. K. Eriksen et al., Power spectrum estimation from high-resolution maps by Gibbs sampling, The Astrophysical Journal Supplement Series 155, 227 (2004), arXiv:astro-ph/0407028.
  26. A. Baleato Lizancos, A. Challinor, and J. Carron, Limitations of CMB B-mode template delensing, Physical Review D 103, 023518 (2021a), arXiv:2010.14286 [astro-ph].
  27. T. Namikawa and R. Nagata, Lensing reconstruction from a patchwork of polarization maps, Journal of Cosmology and Astroparticle Physics 2014 (09), 009, arXiv:1405.6568 [astro-ph].
  28. T. Okamoto and W. Hu, CMB Lensing Reconstruction on the Full Sky, Physical Review D 67, 083002 (2003), arXiv:astro-ph/0301031.
  29. A. Lewis, A. Challinor, and D. Hanson, The shape of the CMB lensing bispectrum, Journal of Cosmology and Astroparticle Physics 2011 (03), 018, arXiv:1101.2234 [astro-ph].
  30. T. Namikawa, CMB internal delensing with general optimal estimator for higher-order correlations, Physical Review D 95, 103514 (2017), arXiv:1703.00169 [astro-ph].
  31. A. Baleato Lizancos, A. Challinor, and J. Carron, Impact of internal-delensing biases on searches for primordial B-modes of CMB polarisation, Journal of Cosmology and Astroparticle Physics 2021 (03), 016, arXiv:2007.01622 [astro-ph].
  32. A. van Engelen et al., CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps, The Astrophysical Journal 786, 13 (2014), arXiv:1310.7023 [astro-ph].
  33. A. Baleato Lizancos and S. Ferraro, The impact of extragalactic foregrounds on internal delensing of CMB B-mode polarization, Physical Review D 106, 063534 (2022), arXiv:2205.09000 [astro-ph].
  34. Planck Collaboration, Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies, Astronomy & Astrophysics 596, A109 (2016a), arXiv:1605.09387 [astro-ph].
  35. A. Dey et al., Overview of the DESI Legacy Imaging Surveys, The Astronomical Journal 157, 168 (2019), arXiv:1804.08657 [astro-ph].
  36. E. F. Schlafly et al., The unWISE Catalog: Two Billion Infrared Sources from Five Years of WISE Imaging, The Astrophysical Journal Supplement Series 240, 30 (2019), arXiv:1901.03337 [astro-ph].
  37. Z. Ivezić et al., LSST: from Science Drivers to Reference Design and Anticipated Data Products, The Astrophysical Journal 873, 111 (2018), arXiv:0805.2366 [astro-ph].
  38. C. M. Hirata and U. Seljak, Reconstruction of lensing from the cosmic microwave background polarization, Physical Review D 68, 083002 (2003), arXiv:astro-ph/0306354.
  39. T. Namikawa et al., LiteBIRD Science Goals and Forecasts: Improving Sensitivity to Inflationary Gravitational Waves with Multitracer Delensing (2023), arXiv:2312.05194 [astro-ph].
  40. B. D. Sherwin and M. Schmittfull, Delensing the CMB with the Cosmic Infrared Background, Physical Review D 92, 043005 (2015), arXiv:1502.05356 [astro-ph].
  41. B. Yu, J. C. Hill, and B. D. Sherwin, Multitracer CMB delensing maps from Planck and WISE data, Physical Review D 96, 123511 (2017), arXiv:1705.02332 [astro-ph].
  42. G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics (1986).
  43. Planck Collaboration, Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, Astronomy & Astrophysics 586, A133 (2016b), arXiv:1409.5738 [astro-ph].
  44. Planck Collaboration, Planck 2018 results. XI. Polarized dust foregrounds, Astronomy and Astrophysics 641, A11 (2020b), aDS Bibcode: 2020A&A…641A..11P.
  45. U. Fuskeland et al., Constraints on the spectral index of polarized synchrotron emission from WMAP and Faraday-corrected S-PASS data, Astronomy and Astrophysics 646, A69 (2021), aDS Bibcode: 2021A&A…646A..69F.
  46. S. Hamimeche and A. Lewis, Likelihood Analysis of CMB Temperature and Polarization Power Spectra, Physical Review D 77, 103013 (2008), arXiv:0801.0554 [astro-ph].
  47. L. Knox, Determination of inflationary observables by cosmic microwave background anisotropy experiments, Phys. Rev. D 52, 4307 (1995), arXiv:astro-ph/9504054 [astro-ph] .
  48. S. Belkner et al., CMB-S4: Iterative internal delensing and r constraints (2023), arXiv:2310.06729 [astro-ph.CO].
  49. J. Errard et al., Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization, Journal of Cosmology and Astroparticle Physics 2016 (03), 052, arXiv:1509.06770 [astro-ph].
  50. R. Stompor et al., Maximum Likelihood algorithm for parametric component separation in CMB experiments, Monthly Notices of the Royal Astronomical Society 392, 216 (2009), arXiv:0804.2645 [astro-ph].
  51. A. Lewis, A. Challinor, and A. Lasenby, Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models, Astrophys. J.  538, 473 (2000), arXiv:astro-ph/9911177 [astro-ph] .
  52. E. Calabrese et al., Cosmological Parameters from pre-Planck CMB Measurements: a 2017 Update, Physical Review D 95, 063525 (2017), arXiv:1702.03272 [astro-ph].
  53. K. M. Gorski et al., HEALPix – a Framework for High Resolution Discretization, and Fast Analysis of Data Distributed on the Sphere, The Astrophysical Journal 622, 759 (2005), arXiv:astro-ph/0409513.
  54. QUIET Collaboration, The QUIET Instrument, The Astrophysical Journal 768, 9 (2013), arXiv:1207.5562 [astro-ph].
  55. R. W. Ogburn IV et al., BICEP2 and Keck Array operational overview and status of observations, in Proceedings of SPIE, Vol. 8452 (2012) arXiv:1208.0638 [astro-ph].
  56. M. Mallaby-Kay et al., The Atacama Cosmology Telescope: Summary of DR4 and DR5 Data Products and Data Access, The Astrophysical Journal Supplement Series 255, 11 (2021), arXiv:2103.03154 [astro-ph].
  57. A. Baleato Lizancos et al., Delensing the CMB with the cosmic infrared background: the impact of foregrounds, Monthly Notices of the Royal Astronomical Society 514, 5786 (2022), arXiv:2102.01045 [astro-ph].
  58. S. Aiola et al., The Atacama Cosmology Telescope: DR4 maps and cosmological parameters, Journal of Cosmology and Astroparticle Physics 2020 (12), 047.
  59. B. Thorne et al., The Python Sky Model: software for simulating the Galactic microwave sky, Monthly Notices of the Royal Astronomical Society 469, 2821 (2017), arXiv:1608.02841 [astro-ph].
  60. Planck Collaboration, Planck 2015 results. X. Diffuse component separation: Foreground maps, Astronomy & Astrophysics 594, A10 (2016c), arXiv:1502.01588 [astro-ph].
  61. C. L. Bennett et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, The Astrophysical Journal Supplement Series 208, 20 (2012), arXiv:1212.5225v3 [astro-ph.CO].
  62. C. G. T. Haslam et al., A 408 MHz all-sky continuum survey. I - Observations at southern declinations and for the North Polar region., Astronomy and Astrophysics 100, 209 (1981), ADS Bibcode: 1981A&A…100..209H.
  63. C. G. T. Haslam et al., A 408-MHZ All-Sky Continuum Survey. II. The Atlas of Contour Maps, Astronomy and Astrophysics Supplement Series 47, 1 (1982), ADS Bibcode: 1982A&AS…47….1H.
  64. N. Krachmalnicoff et al., The S-PASS view of polarized Galactic Synchrotron at 2.3 GHz as a contaminant to CMB observations, Astronomy & Astrophysics 618, A166 (2018), arXiv:1802.01145 [astro-ph.GA].
  65. I. Abril-Cabezas et al., Impact of Galactic dust non-Gaussianity on searches for B-modes from inflation, Monthly Notices of the Royal Astronomical Society 527, 5751 (2023), arXiv:2309.09978 [astro-ph].
  66. E. Hivon et al., MASTER of the CMB Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex CMB Data Sets, The Astrophysical Journal 567, 2 (2002), arXiv:astro-ph/0105302.
  67. K. M. Smith, Pseudo-Cℓsubscript𝐶ℓ{C}_{\ell}italic_C start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT estimators which do not mix E and B modes, Physical Review D 74, 083002 (2006), arXiv:astro-ph/0511629.
  68. D. Alonso, J. Sanchez, and A. Slosar, A unified pseudo-Cℓsubscript𝐶ℓ{C}_{\ell}italic_C start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT framework, Monthly Notices of the Royal Astronomical Society 484, 4127 (2019), arXiv:1809.09603 [astro-ph].
  69. F. J. Qu et al., The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth, Astrophys. J.  962, 112 (2024), arXiv:2304.05202 [astro-ph.CO] .
  70. D. Beck et al., Bias on Tensor-to-Scalar Ratio Inference With Estimated Covariance Matrices, Monthly Notices of the Royal Astronomical Society 515, 229 (2022), arXiv:2202.05949 [astro-ph].
  71. A. Zonca et al., The Python Sky Model 3 software, Journal of Open Source Software 6, 3783 (2021), arXiv:2108.01444 [astro-ph].
  72. G. Efstathiou, Myths and Truths Concerning Estimation of Power Spectra, Monthly Notices of the Royal Astronomical Society 349, 603 (2004), arXiv:astro-ph/0307515.
  73. D. Beck, J. Errard, and R. Stompor, Impact of Polarized Galactic Foreground Emission on CMB Lensing Reconstruction and Delensing of B-Modes, Journal of Cosmology and Astroparticle Physics 2020 (06), 030, arXiv:2001.02641 [astro-ph].
  74. S. Azzoni et al., A hybrid map-Cℓsubscript𝐶ℓ{C}_{\ell}italic_C start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT component separation method for primordial CMB B-mode searches, Journal of Cosmology and Astroparticle Physics 2023 (03), 035, arXiv:2210.14838 [astro-ph].
  75. A. Lewis, A. Challinor, and A. Lasenby, Efficient Computation of CMB anisotropies in closed FRW models, The Astrophysical Journal 538, 473 (2000), arXiv:astro-ph/9911177.
  76. A. Zonca et al., healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python, Journal of Open Source Software 4, 1298 (2019).
  77. T. Namikawa, cmblensplus: A tool to analyze cosmic microwave background anisotropies, Astrophysics Source Code Library, record ascl:2104.021 (2021).
  78. D. Foreman-Mackey et al., emcee: The MCMC Hammer (2012).
  79. C. R. Harris et al., Array Programming with NumPy (2020).
  80. P. Virtanen et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261 (2020).
  81. J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science and Engineering 9, 90 (2007).
Citations (1)

Summary

We haven't generated a summary for this paper yet.