Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wildfire Risk Prediction: A Review (2405.01607v4)

Published 2 May 2024 in cs.LG and cs.CV

Abstract: Wildfires have significant impacts on global vegetation, wildlife, and humans. They destroy plant communities and wildlife habitats and contribute to increased emissions of carbon dioxide, nitrogen oxides, methane, and other pollutants. The prediction of wildfires relies on various independent variables combined with regression or machine learning methods. In this technical review, we describe the options for independent variables, data processing techniques, models, independent variables collinearity and importance estimation methods, and model performance evaluation metrics. First, we divide the independent variables into 4 aspects, including climate and meteorology conditions, socio-economical factors, terrain and hydrological features, and wildfire historical records. Second, preprocessing methods are described for different magnitudes, different spatial-temporal resolutions, and different formats of data. Third, the collinearity and importance evaluation methods of independent variables are also considered. Fourth, we discuss the application of statistical models, traditional machine learning models, and deep learning models in wildfire risk prediction. In this subsection, compared with other reviews, this manuscript particularly discusses the evaluation metrics and recent advancements in deep learning methods. Lastly, addressing the limitations of current research, this paper emphasizes the need for more effective deep learning time series forecasting algorithms, the utilization of three-dimensional data including ground and trunk fuel, extraction of more accurate historical fire point data, and improved model evaluation metrics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (149)
  1. Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. SCIENCE OF THE TOTAL ENVIRONMENT 879, 163004. URL: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DynamicDOIArticle&SrcApp=WOS&KeyAID=10.1016%2Fj.scitotenv.2023.163004&DestApp=DOI&SrcAppSID=USW2EC0D7EfQ4jdthTkoDVukmMmGx&SrcJTitle=SCIENCE+OF+THE+TOTAL+ENVIRONMENT&DestDOIRegistrantName=Elsevier, doi:10.1016/j.scitotenv.2023.163004. num Pages: 14 Place: Amsterdam Publisher: Elsevier Web of Science ID: WOS:000973651700001.
  2. Machine-learning modelling of fire susceptibility in a forest-agriculture mosaic landscape of southern India. Ecological Informatics 64, 101348. URL: https://www.sciencedirect.com/science/article/pii/S1574954121001394, doi:10.1016/j.ecoinf.2021.101348.
  3. Developing a geospatial data-driven solution for rapid natural wildfire risk assessment. Applied Geography 126, 102382. URL: https://www.sciencedirect.com/science/article/pii/S0143622820314818, doi:10.1016/j.apgeog.2020.102382.
  4. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. Forest Ecology and Management 259, 1556–1570. URL: https://www.sciencedirect.com/science/article/pii/S0378112710000514, doi:10.1016/j.foreco.2010.01.032.
  5. Global and regional analysis of climate and human drivers of wildfire. Science of The Total Environment 409, 3472–3481. URL: https://www.sciencedirect.com/science/article/pii/S0048969711005353, doi:10.1016/j.scitotenv.2011.05.032.
  6. A data-driven model for Fennoscandian wildfire danger. Natural Hazards and Earth System Sciences 23, 65–89. URL: https://www.duo.uio.no/handle/10852/108719, doi:10.5194/nhess-23-65-2023. accepted: 2024-02-27T18:29:41Z.
  7. Effects of ignition location models on the burn patterns of simulated wildfires. Environmental Modelling & Software 26, 583–592. URL: https://www.sciencedirect.com/science/article/pii/S1364815210003233, doi:10.1016/j.envsoft.2010.11.016.
  8. Suburban Forest Fire Risk Assessment and Forest Surveillance Using 360-Degree Cameras and a Multiscale Deformable Transformer. Remote Sensing 15, 1995. URL: https://www.mdpi.com/2072-4292/15/8/1995, doi:10.3390/rs15081995. number: 8 Publisher: Multidisciplinary Digital Publishing Institute.
  9. Geostatistical Modeling of Wildfire Occurrence Probability: The Case Study of Monte Catillo Natural Reserve in Italy. Fire 6, 427. URL: https://www.mdpi.com/2571-6255/6/11/427, doi:10.3390/fire6110427. number: 11 Publisher: Multidisciplinary Digital Publishing Institute.
  10. Predicting wildfire burns from big geodata using deep learning. Safety Science 140, 105276. URL: https://www.sciencedirect.com/science/article/pii/S0925753521001211, doi:10.1016/j.ssci.2021.105276.
  11. Predicting burnt areas during the summer season in Portugal by combining wildfire susceptibility and spring meteorological conditions. Geomatics, Natural Hazards and Risk 12, 1039–1057. URL: https://doi.org/10.1080/19475705.2021.1909664, doi:10.1080/19475705.2021.1909664. publisher: Taylor & Francis _eprint: https://doi.org/10.1080/19475705.2021.1909664.
  12. Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions. International Journal of Wildland Fire 16, 161–173. URL: https://www.publish.csiro.au/wf/WF06072, doi:10.1071/WF06072. publisher: CSIRO PUBLISHING.
  13. A multi-modal wildfire prediction and early-warning system based on a novel machine learning framework. Journal of Environmental Management 341, 117908. URL: https://www.sciencedirect.com/science/article/pii/S0301479723006965, doi:10.1016/j.jenvman.2023.117908.
  14. Live fuel moisture content and leaf ignition of forest species in Andean Patagonia, Argentina. International Journal of Wildland Fire 24, 340–348. URL: https://www.publish.csiro.au/wf/WF13099, doi:10.1071/WF13099. publisher: CSIRO PUBLISHING.
  15. Comparison of Leaf Moisture Content and Ignition Characteristics among Native Species and Exotic Conifers in Northwestern Patagonia, Argentina. Forest Science 65, 375–386. URL: https://doi.org/10.1093/forsci/fxy054, doi:10.1093/forsci/fxy054.
  16. Random Forests. Machine Learning 45, 5–32. URL: https://doi.org/10.1023/A:1010933404324, doi:10.1023/A:1010933404324.
  17. Approximate Inference in Generalized Linear Mixed Models. Journal of the American Statistical Association 88, 9–25. URL: https://www.jstor.org/stable/2290687, doi:10.2307/2290687. publisher: [American Statistical Association, Taylor & Francis, Ltd.].
  18. Forecasting wildfire disease on tobacco: toward developing a high-accuracy prediction model for disease index using local climate factors and support vector regression. Theoretical and Applied Climatology 137, 2139–2149. URL: https://doi.org/10.1007/s00704-018-2708-x, doi:10.1007/s00704-018-2708-x.
  19. Retrieving forest background reflectance in a boreal region from Multi-angle Imaging SpectroRadiometer (MISR) data. Remote Sensing of Environment 107, 312–321. URL: https://www.sciencedirect.com/science/article/pii/S0034425706004184, doi:10.1016/j.rse.2006.07.023.
  20. Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agricultural and Forest Meteorology 116, 49–59. URL: https://www.sciencedirect.com/science/article/pii/S0168192302002484, doi:10.1016/S0168-1923(02)00248-4.
  21. Learning Wildfire Model from Incomplete State Observations. URL: http://arxiv.org/abs/2111.14038. arXiv:2111.14038 [cs].
  22. Explainable Global Wildfire Prediction Models using Graph Neural Networks. URL: http://arxiv.org/abs/2402.07152. arXiv:2402.07152 [cs].
  23. Estimation of potential wildfire behavior characteristics to assess wildfire danger in southwest China using deep learning schemes. Journal of Environmental Management 351, 120005. URL: https://linkinghub.elsevier.com/retrieve/pii/S0301479723027937, doi:10.1016/j.jenvman.2023.120005.
  24. Geographically Weighted Quantile Regression (GWQR): An Application to U.S. Mortality Data. Geographical Analysis 44, 134–150. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1538-4632.2012.00841.x, doi:10.1111/j.1538-4632.2012.00841.x. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1538-4632.2012.00841.x.
  25. Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. Journal of Hydrology 572, 435–448. URL: https://www.sciencedirect.com/science/article/pii/S0022169419302604, doi:10.1016/j.jhydrol.2019.03.013.
  26. How much global burned area can be forecast on seasonal time scales using sea surface temperatures? Environmental Research Letters 11, 045001. URL: https://dx.doi.org/10.1088/1748-9326/11/4/045001, doi:10.1088/1748-9326/11/4/045001. publisher: IOP Publishing.
  27. Development of a predictive model for estimating forest surface fuel load in Australian eucalypt forests with LiDAR data. Environmental Modelling & Software 97, 61–71. URL: https://www.sciencedirect.com/science/article/pii/S1364815216304418, doi:10.1016/j.envsoft.2017.07.007.
  28. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment 92, 322–331. URL: https://www.sciencedirect.com/science/article/pii/S0034425704001531, doi:10.1016/j.rse.2004.01.019.
  29. Short-term fire risk: foliage moisture content estimation from satellite data, in: Chuvieco, E. (Ed.), Remote Sensing of Large Wildfires: in the European Mediterranean Basin. Springer, Berlin, Heidelberg, pp. 17–38. URL: https://doi.org/10.1007/978-3-642-60164-4_3, doi:10.1007/978-3-642-60164-4_3.
  30. WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. Journal of Applied Meteorology and Climatology 52, 16–38. URL: https://journals.ametsoc.org/view/journals/apme/52/1/jamc-d-12-023.1.xml, doi:10.1175/JAMC-D-12-023.1. publisher: American Meteorological Society Section: Journal of Applied Meteorology and Climatology.
  31. Use of Normalized Difference Water Index for monitoring live fuel moisture. International Journal of Remote Sensing 26, 1035–1042. URL: https://doi.org/10.1080/0143116042000273998, doi:10.1080/0143116042000273998. publisher: Taylor & Francis _eprint: https://doi.org/10.1080/0143116042000273998.
  32. Techniques for interpretable machine learning. Communications of the ACM 63, 68–77. URL: https://dl.acm.org/doi/10.1145/3359786, doi:10.1145/3359786.
  33. Predicting continuous variation in forest fuel load using biophysical models: a case study in south-eastern Australia. International Journal of Wildland Fire 22, 318–332. URL: https://www.publish.csiro.au/wf/WF11087, doi:10.1071/WF11087. publisher: CSIRO PUBLISHING.
  34. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sensing of Environment 87, 111–121. URL: https://www.sciencedirect.com/science/article/pii/S0034425703001895, doi:10.1016/j.rse.2003.07.002.
  35. Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth. Hydrology and Earth System Sciences 27, 39–68. URL: https://hess.copernicus.org/articles/27/39/2023/, doi:10.5194/hess-27-39-2023. publisher: Copernicus GmbH.
  36. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58, 257–266. URL: https://www.sciencedirect.com/science/article/pii/S0034425796000673, doi:10.1016/S0034-4257(96)00067-3.
  37. Assessment of the influence of biophysical properties related to fuel conditions on fire severity using remote sensing techniques: a case study on a large fire in NW Spain. International Journal of Wildland Fire 28, 512–520. URL: https://www.publish.csiro.au/wf/WF18156, doi:10.1071/WF18156. publisher: CSIRO PUBLISHING.
  38. Analysis of Wildfire Susceptibility by Weight of Evidence, Using Geomorphological and Environmental Factors in the Marche Region, Central Italy. Geosciences 14, 112. URL: https://www.mdpi.com/2076-3263/14/5/112, doi:10.3390/geosciences14050112. number: 5 Publisher: Multidisciplinary Digital Publishing Institute.
  39. Where there’s Smoke, there’s Fire: Wildfire Risk Predictive Modeling via Historical Climate Data. Proceedings of the AAAI Conference on Artificial Intelligence 35, 15309–15315. URL: https://ojs.aaai.org/index.php/AAAI/article/view/17797, doi:10.1609/aaai.v35i17.17797. number: 17.
  40. Wildfire Susceptibility Evaluation By Integrating an Analytical Network Process Approach Into GIS-Based Analyses, in: Wildfire Susceptibility Evaluation By Integrating an Analytical Network Process Approach Into GIS-Based Analyses. URL: https://uni-salzburg.elsevierpure.com/en/publications/wildfire-susceptibility-evaluation-by-integrating-an-analytical-n.
  41. Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire 2, 50. URL: https://www.mdpi.com/2571-6255/2/3/50, doi:10.3390/fire2030050. number: 3 Publisher: Multidisciplinary Digital Publishing Institute.
  42. Validation of Variables for the Creation of a Descriptive Fire Potential Model for the Southeastern Fire District of Mississippi. Theses and Dissertations URL: https://scholarsjunction.msstate.edu/td/4942.
  43. Geospatial information on geographical and human factors improved anthropogenic fire occurrence modeling in the Chinese boreal forest. Canadian Journal of Forest Research 46, 582–594. URL: https://cdnsciencepub.com/doi/full/10.1139/cjfr-2015-0373, doi:10.1139/cjfr-2015-0373. publisher: NRC Research Press.
  44. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. International Journal of Wildland Fire 25, 505–519. URL: https://www.publish.csiro.au/wf/WF15121, doi:10.1071/WF15121. publisher: CSIRO PUBLISHING.
  45. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment 131, 152–159. URL: https://www.sciencedirect.com/science/article/pii/S0034425712004610, doi:10.1016/j.rse.2012.12.004.
  46. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series. Remote Sensing 7, 12314–12335. URL: https://www.mdpi.com/2072-4292/7/9/12314, doi:10.3390/rs70912314. number: 9 Publisher: Multidisciplinary Digital Publishing Institute.
  47. Wildfire probability estimated from recent climate and fine fuels across the big sagebrush region. Fire Ecology 20, 22. URL: https://doi.org/10.1186/s42408-024-00252-4, doi:10.1186/s42408-024-00252-4.
  48. Predicting spatial patterns of wildfire susceptibility in the Huichang County, China: An integrated model to analysis of landscape indicators. Ecological Indicators 101, 878–891. URL: https://www.sciencedirect.com/science/article/pii/S1470160X19300792, doi:10.1016/j.ecolind.2019.01.056.
  49. Developing Risk Assessment Framework for Wildfire in the United States – A Deep Learning Approach to Safety and Sustainability. Journal of Safety and Sustainability URL: https://www.sciencedirect.com/science/article/pii/S2949926723000033, doi:10.1016/j.jsasus.2023.09.002.
  50. The progress of operational forest fire monitoring with infrared remote sensing. Journal of Forestry Research 28, 215–229. URL: https://doi.org/10.1007/s11676-016-0361-8, doi:10.1007/s11676-016-0361-8.
  51. Deep Learning Models for Predicting Wildfires from Historical Remote-Sensing Data. URL: http://arxiv.org/abs/2010.07445. arXiv:2010.07445 [cs].
  52. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological Informatics 39, 32–44. URL: https://linkinghub.elsevier.com/retrieve/pii/S1574954117300912, doi:10.1016/j.ecoinf.2017.03.003.
  53. Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics. Remote Sensing 11, 618. URL: https://www.mdpi.com/2072-4292/11/6/618, doi:10.3390/rs11060618. number: 6 Publisher: Multidisciplinary Digital Publishing Institute.
  54. Fire Risk Assessment Using Neural Network and Logistic Regression. Journal of the Indian Society of Remote Sensing 44, 885–894. URL: https://doi.org/10.1007/s12524-016-0557-6, doi:10.1007/s12524-016-0557-6.
  55. A review of machine learning applications in wildfire science and management. Environmental Reviews 28, 478–505. URL: https://cdnsciencepub.com/doi/10.1139/er-2020-0019, doi:10.1139/er-2020-0019. publisher: NRC Research Press.
  56. Global Wildfire Danger Predictions Based on Deep Learning Taking into Account Static and Dynamic Variables. Forests 15, 216. URL: https://www.mdpi.com/1999-4907/15/1/216, doi:10.3390/f15010216. number: 1 Publisher: Multidisciplinary Digital Publishing Institute.
  57. Wildfire risk assessment using deep learning in Guangdong Province, China. International Journal of Applied Earth Observation and Geoinformation 128, 103750. URL: https://www.sciencedirect.com/science/article/pii/S1569843224001043, doi:10.1016/j.jag.2024.103750.
  58. Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data. Remote Sensing 12, 3682. URL: https://www.mdpi.com/2072-4292/12/22/3682, doi:10.3390/rs12223682. number: 22 Publisher: Multidisciplinary Digital Publishing Institute.
  59. Data-Driven Approaches for Wildfire Mapping and Prediction Assessment Using a Convolutional Neural Network (CNN). Remote Sensing 15, NA–NA. URL: https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=20724292&v=2.1&it=r&id=GALE%7CA772535779&sid=googleScholar&linkaccess=abs, doi:10.3390/rs15215099. publisher: MDPI AG.
  60. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire 10, 301–319. URL: https://www.publish.csiro.au/wf/wf01028, doi:10.1071/wf01028. publisher: CSIRO PUBLISHING.
  61. Modelling the daily probability of wildfire occurrence in the contiguous United States. Environmental Research Letters 19, 024036. URL: https://dx.doi.org/10.1088/1748-9326/ad21b0, doi:10.1088/1748-9326/ad21b0. publisher: IOP Publishing.
  62. The role of forest cover and valley geometry in cold-air pool evolution. Journal of Geophysical Research: Atmospheres 120, 8693–8711. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/2014JD022998, doi:10.1002/2014JD022998. _eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD022998.
  63. Wildfire Danger Prediction and Understanding With Deep Learning. Geophysical Research Letters 49, e2022GL099368. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2022GL099368, doi:10.1029/2022GL099368. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL099368.
  64. Photosynthetic Adaptation to Water Stress and Implications for Drought Resistance, in: Crop Reactions To Water And Temperature Stresses In Humid, Temperate Climates. CRC Press. Num Pages: 30.
  65. Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions. International Journal of Wildland Fire 32, 111–132. URL: https://www.publish.csiro.au/wf/WF22056, doi:10.1071/WF22056. publisher: CSIRO PUBLISHING.
  66. Quantifying surface fuels for fire modelling in temperate forests using airborne lidar and Sentinel-2: potential and limitations. Remote Sensing of Environment 295, 113711. URL: https://www.sciencedirect.com/science/article/pii/S0034425723002626, doi:10.1016/j.rse.2023.113711.
  67. Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests. PLOS ONE 9, e85127. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085127, doi:10.1371/journal.pone.0085127. publisher: Public Library of Science.
  68. Predicting Sustained Fire Spread in Tasmanian Native Grasslands. Environmental Management 44, 430–440. URL: https://doi.org/10.1007/s00267-009-9340-6, doi:10.1007/s00267-009-9340-6.
  69. Predictive model of spatial scale of forest fire driving factors: a case study of Yunnan Province, China. Scientific Reports 12, 19029. URL: https://www.nature.com/articles/s41598-022-23697-6, doi:10.1038/s41598-022-23697-6. publisher: Nature Publishing Group.
  70. Forest foliage fuel load estimation from multi-sensor spatiotemporal features. International Journal of Applied Earth Observation and Geoinformation 115, 103101. URL: https://www.sciencedirect.com/science/article/pii/S1569843222002898, doi:10.1016/j.jag.2022.103101.
  71. Wildland Fire Burned Areas Prediction Using Long Short-Term Memory Neural Network with Attention Mechanism. Fire Technology 57, 1–23. URL: https://doi.org/10.1007/s10694-020-01028-3, doi:10.1007/s10694-020-01028-3.
  72. A Neural Network Model for Wildfire Scale Prediction Using Meteorological Factors. IEEE Access 7, 176746–176755. URL: https://ieeexplore.ieee.org/document/8924693, doi:10.1109/ACCESS.2019.2957837. conference Name: IEEE Access.
  73. Variance inflation factors in the analysis of complex survey data. Survey Methodology 38, 53–62.
  74. Wildfire potential evaluation during a drought event with a regional climate model and NDVI. Ecological Informatics 5, 418–428. URL: https://www.sciencedirect.com/science/article/pii/S1574954110000531, doi:10.1016/j.ecoinf.2010.04.001.
  75. Evaluation of microwave soil moisture data for monitoring live fuel moisture content (LFMC) over the coterminous United States. Science of The Total Environment 771, 145410. URL: https://www.sciencedirect.com/science/article/pii/S0048969721004782, doi:10.1016/j.scitotenv.2021.145410.
  76. A Unified Approach to Interpreting Model Predictions, in: Advances in Neural Information Processing Systems, Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.
  77. Data-Driven Wildfire Risk Prediction in Northern California. Atmosphere 12, 109. URL: https://www.mdpi.com/2073-4433/12/1/109, doi:10.3390/atmos12010109. number: 1 Publisher: Multidisciplinary Digital Publishing Institute.
  78. Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environmental Research Letters 14, 064007. URL: https://dx.doi.org/10.1088/1748-9326/ab1bc5, doi:10.1088/1748-9326/ab1bc5. publisher: IOP Publishing.
  79. Seasonal predictability of summer fires in a Mediterranean environment. International Journal of Wildland Fire 24, 1076–1084. URL: https://www.publish.csiro.au/wf/WF15079, doi:10.1071/WF15079. publisher: CSIRO PUBLISHING.
  80. Modelling seasonal variation in daily people-caused forest fire occurrence. Canadian Journal of Forest Research 19, 1555–1563. URL: https://cdnsciencepub.com/doi/10.1139/x89-237, doi:10.1139/x89-237. publisher: NRC Research Press.
  81. Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management 90, 1241–1252. URL: https://www.sciencedirect.com/science/article/pii/S0301479708001758, doi:10.1016/j.jenvman.2008.07.005.
  82. Spectral indices and fire behavior simulation for fire risk assessment in savanna ecosystems. Remote Sensing of Environment 91, 1–13. URL: https://www.sciencedirect.com/science/article/pii/S0034425703002827, doi:10.1016/j.rse.2003.10.019.
  83. Generalized Linear Models. 2 ed., Routledge, New York. doi:10.1201/9780203753736.
  84. A global fuel characteristic model and dataset for wildfire prediction. Biogeosciences 21, 279–300. URL: https://bg.copernicus.org/articles/21/279/2024/, doi:10.5194/bg-21-279-2024. publisher: Copernicus GmbH.
  85. A physics-based approach to modelling grassland fires. International Journal of Wildland Fire 16, 1–22. URL: https://www.publish.csiro.au/wf/WF06002, doi:10.1071/WF06002. publisher: CSIRO PUBLISHING.
  86. Time Series Forest Fire Prediction Based on Improved Transformer. Forests 14, 1596. URL: https://www.mdpi.com/1999-4907/14/8/1596, doi:10.3390/f14081596. number: 8 Publisher: Multidisciplinary Digital Publishing Institute.
  87. Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Science of The Total Environment 764, 142844. URL: https://www.sciencedirect.com/science/article/pii/S0048969720363749, doi:10.1016/j.scitotenv.2020.142844.
  88. Seasonal Fire Prediction using Spatio-Temporal Deep Neural Networks. URL: http://arxiv.org/abs/2404.06437. arXiv:2404.06437 [cs].
  89. Projecting live fuel moisture content via deep learning. International Journal of Wildland Fire 32, 709–727. URL: https://www.publish.csiro.au/wf/WF22188, doi:10.1071/WF22188. publisher: CSIRO PUBLISHING.
  90. Wildfire Prediction: Handling Uncertainties Using Integrated Bayesian Networks and Fuzzy Logic, in: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7. URL: https://ieeexplore.ieee.org/document/9177700, doi:10.1109/FUZZ48607.2020.9177700. iSSN: 1558-4739.
  91. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International Journal of Environmental Science and Technology 15, 373–384. URL: https://doi.org/10.1007/s13762-017-1371-6, doi:10.1007/s13762-017-1371-6.
  92. Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General) 135, 370–384. URL: https://www.jstor.org/stable/2344614, doi:10.2307/2344614. publisher: [Royal Statistical Society, Wiley].
  93. Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research 30, 1071–1087. URL: https://cdnsciencepub.com/doi/abs/10.1139/x00-032, doi:10.1139/x00-032. publisher: NRC Research Press.
  94. The revival of the Gini importance? Bioinformatics 34, 3711–3718. URL: https://doi.org/10.1093/bioinformatics/bty373, doi:10.1093/bioinformatics/bty373.
  95. Spatial Prediction of Wildfire Susceptibility Using Hybrid Machine Learning Models Based on Support Vector Regression in Sydney, Australia. Remote Sensing 15, 760. URL: https://www.mdpi.com/2072-4292/15/3/760, doi:10.3390/rs15030760. number: 3 Publisher: Multidisciplinary Digital Publishing Institute.
  96. Wildfire risk modeling. Current Opinion in Environmental Science & Health 23, 100274. URL: https://www.sciencedirect.com/science/article/pii/S2468584421000465, doi:10.1016/j.coesh.2021.100274.
  97. Using model-based geostatistics to predict lightning-caused wildfires. Environmental Modelling & Software 29, 44–50. URL: https://www.sciencedirect.com/science/article/pii/S1364815211002155, doi:10.1016/j.envsoft.2011.10.004.
  98. Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests From 1985 to 2017. Geophysical Research Letters 47, e2020GL089858. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2020GL089858, doi:10.1029/2020GL089858. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089858.
  99. Wildfire likelihood in Canadian treed peatlands based on remote-sensing time-series of surface conditions. Remote Sensing of Environment 296, 113747. URL: https://www.sciencedirect.com/science/article/pii/S0034425723002985, doi:10.1016/j.rse.2023.113747.
  100. The reflectance at the 950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing 14, 1887–1905. URL: https://doi.org/10.1080/01431169308954010, doi:10.1080/01431169308954010. publisher: Taylor & Francis _eprint: https://doi.org/10.1080/01431169308954010.
  101. Spatial Prediction of Rainfall-Induced Landslides Using Aggregating One-Dependence Estimators Classifier. Journal of the Indian Society of Remote Sensing 46, 1457–1470. URL: https://doi.org/10.1007/s12524-018-0791-1, doi:10.1007/s12524-018-0791-1.
  102. Comparing calibrated statistical and machine learning methods for wildland fire occurrence prediction: a case study of human-caused fires in Lac La Biche, Alberta, Canada. International Journal of Wildland Fire 30, 850–870. URL: https://www.publish.csiro.au/wf/WF20139, doi:10.1071/WF20139. publisher: CSIRO PUBLISHING.
  103. Estimation of seasonal dynamics of understory NDVI in northern forests using MODIS BRDF data: Semi-empirical versus physically-based approach. Remote Sensing of Environment 163, 42–47. URL: https://www.sciencedirect.com/science/article/pii/S0034425715000991, doi:10.1016/j.rse.2015.03.003.
  104. Climatology and Meteorological Evolution of Major Wildfire Events over the Northeast United States. Weather and Forecasting 28, 175–193. URL: https://journals.ametsoc.org/view/journals/wefo/28/1/waf-d-12-00009_1.xml, doi:10.1175/WAF-D-12-00009.1. publisher: American Meteorological Society Section: Weather and Forecasting.
  105. TeleViT: Teleconnection-Driven Transformers Improve Subseasonal to Seasonal Wildfire Forecasting, pp. 3754–3759. URL: https://openaccess.thecvf.com/content/ICCV2023W/AIHADR/html/Prapas_TeleViT_Teleconnection-Driven_Transformers_Improve_Subseasonal_to_Seasonal_Wildfire_Forecasting_ICCVW_2023_paper.html.
  106. Wildfire preparedness, community cohesion and social–ecological systems. Global Environmental Change 23, 1575–1586. URL: https://www.sciencedirect.com/science/article/pii/S0959378013001684, doi:10.1016/j.gloenvcha.2013.09.016.
  107. Predicting forest fire using multispectral satellite measurements in Nepal. Remote Sensing Applications: Society and Environment 23, 100539. URL: https://www.sciencedirect.com/science/article/pii/S2352938521000756, doi:10.1016/j.rsase.2021.100539.
  108. Improving wildfire occurrence modelling by integrating time-series features of weather and fuel moisture content. Environmental Modelling & Software 170, 105840. URL: https://www.sciencedirect.com/science/article/pii/S1364815223002268, doi:10.1016/j.envsoft.2023.105840.
  109. Global fuel moisture content mapping from MODIS. International Journal of Applied Earth Observation and Geoinformation 101, 102354. URL: https://www.sciencedirect.com/science/article/pii/S0303243421000611, doi:10.1016/j.jag.2021.102354.
  110. Induction of decision trees. Machine Learning 1, 81–106. URL: https://doi.org/10.1007/BF00116251, doi:10.1007/BF00116251.
  111. SAR-enhanced mapping of live fuel moisture content. Remote Sensing of Environment 245, 111797. URL: https://www.sciencedirect.com/science/article/pii/S003442572030167X, doi:10.1016/j.rse.2020.111797.
  112. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of The Total Environment 615, 438–451. URL: https://www.sciencedirect.com/science/article/pii/S0048969717326141, doi:10.1016/j.scitotenv.2017.09.262.
  113. Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador. Forests 13, 474. URL: https://www.mdpi.com/1999-4907/13/3/474, doi:10.3390/f13030474. number: 3 Publisher: Multidisciplinary Digital Publishing Institute.
  114. Development of novel optimized deep learning algorithms for wildfire modeling: A case study of Maui, Hawai‘i. Engineering Applications of Artificial Intelligence 125, 106699. URL: https://www.sciencedirect.com/science/article/pii/S0952197623008837, doi:10.1016/j.engappai.2023.106699.
  115. A performance comparison of machine learning models for wildfire occurrence risk prediction in the Brazilian Federal District region. Environment Systems and Decisions URL: https://doi.org/10.1007/s10669-023-09921-2, doi:10.1007/s10669-023-09921-2.
  116. Estimation of Forest Fuel Load From Radar Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing 45, 1726–1740. URL: https://ieeexplore.ieee.org/abstract/document/4215087, doi:10.1109/TGRS.2006.887002. conference Name: IEEE Transactions on Geoscience and Remote Sensing.
  117. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15, 234–281. URL: https://www.sciencedirect.com/science/article/pii/0022249677900335, doi:10.1016/0022-2496(77)90033-5.
  118. Wildfire risk prediction in Southeastern Mississippi using population interaction. Ecological Modelling 251, 297–306. URL: https://www.sciencedirect.com/science/article/pii/S0304380013000070, doi:10.1016/j.ecolmodel.2012.12.024.
  119. Wildfire Risk Forecasting Using Weights of Evidence and Statistical Index Models. Sustainability 14, 3881. URL: https://www.mdpi.com/2071-1050/14/7/3881, doi:10.3390/su14073881. number: 7 Publisher: Multidisciplinary Digital Publishing Institute.
  120. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Safety Journal 104, 130–146. URL: https://www.sciencedirect.com/science/article/pii/S0379711218303941, doi:10.1016/j.firesaf.2019.01.006.
  121. Wildfire spreading prediction using multimodal data and deep neural network approach. Scientific Reports 14, 2606. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831103/, doi:10.1038/s41598-024-52821-x.
  122. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment 115, 703–714. URL: https://www.sciencedirect.com/science/article/pii/S0034425710003172, doi:10.1016/j.rse.2010.10.012.
  123. Global Wildfire Outlook Forecast with Neural Networks. Remote Sensing 12, 2246. URL: https://www.mdpi.com/2072-4292/12/14/2246, doi:10.3390/rs12142246. number: 14 Publisher: Multidisciplinary Digital Publishing Institute.
  124. A geo-information system approach for forest fire likelihood based on causative and anti-causative factors. International Journal of Geographical Information Science 28, 427–454. URL: https://doi.org/10.1080/13658816.2013.797984, doi:10.1080/13658816.2013.797984. publisher: Taylor & Francis _eprint: https://doi.org/10.1080/13658816.2013.797984.
  125. The Canadian Forest Fire Danger Rating System: An Overview. The Forestry Chronicle 65, 450–457. URL: https://pubs.cif-ifc.org/doi/abs/10.5558/tfc65450-6, doi:10.5558/tfc65450-6. publisher: Canadian Institute of Forestry.
  126. Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic regression and geographically weighted logistic regression. Natural Hazards 108, 1317–1345. URL: https://doi.org/10.1007/s11069-021-04733-6, doi:10.1007/s11069-021-04733-6.
  127. Effect of fuel spatial resolution on predictive wildfire models. International Journal of Wildland Fire 30, 776–789. URL: https://www.publish.csiro.au/wf/WF20192, doi:10.1071/WF20192. publisher: CSIRO PUBLISHING.
  128. A Google Earth Engine Approach for Wildfire Susceptibility Prediction Fusion with Remote Sensing Data of Different Spatial Resolutions. Remote Sensing 14, 672. URL: https://www.mdpi.com/2072-4292/14/3/672, doi:10.3390/rs14030672. number: 3 Publisher: Multidisciplinary Digital Publishing Institute.
  129. Wildfire Prediction to Inform Fire Management: Statistical Science Challenges. Statistical Science 28, 586–615. URL: https://projecteuclid.org/journals/statistical-science/volume-28/issue-4/Wildfire-Prediction-to-Inform-Fire-Management-Statistical-Science-Challenges/10.1214/13-STS451.full, doi:10.1214/13-STS451. publisher: Institute of Mathematical Statistics.
  130. Enhancing predictive ability of optimized group method of data handling (GMDH) method for wildfire susceptibility mapping. Agricultural and Forest Meteorology 339, 109587. URL: https://www.sciencedirect.com/science/article/pii/S0168192323002782, doi:10.1016/j.agrformet.2023.109587.
  131. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8, 127–150. URL: https://www.sciencedirect.com/science/article/pii/0034425779900130, doi:10.1016/0034-4257(79)90013-0.
  132. Estimation of fuel moisture content towards fire risk assessment: a review. URL: https://www.semanticscholar.org/paper/Estimation-of-fuel-moisture-content-towards-fire-a-Verbesselt-Fleck/5d7c76a2a1ee4ca7f5984be7a66866def092df59.
  133. A Review of Fine Fuel Moisture Modelling. International Journal of Wildland Fire 1, 215–234. URL: https://www.publish.csiro.au/wf/wf9910215, doi:10.1071/wf9910215. publisher: CSIRO PUBLISHING.
  134. Continental-scale prediction of live fuel moisture content using soil moisture information. Agricultural and Forest Meteorology 307, 108503. URL: https://www.sciencedirect.com/science/article/pii/S0168192321001866, doi:10.1016/j.agrformet.2021.108503.
  135. Testing drought indicators for summer burned area prediction in Italy. Natural Hazards 116, 1125–1137. URL: https://doi.org/10.1007/s11069-022-05714-z, doi:10.1007/s11069-022-05714-z.
  136. ERA5-based global meteorological wildfire danger maps. Scientific Data 7, 216. URL: https://www.nature.com/articles/s41597-020-0554-z, doi:10.1038/s41597-020-0554-z. publisher: Nature Publishing Group.
  137. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nature Climate Change 10, 1130–1136. URL: https://www.nature.com/articles/s41558-020-00920-8, doi:10.1038/s41558-020-00920-8. publisher: Nature Publishing Group.
  138. Identifying Key Drivers of Wildfires in the Contiguous US Using Machine Learning and Game Theory Interpretation. Earth’s Future 9, e2020EF001910. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2020EF001910, doi:10.1029/2020EF001910. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020EF001910.
  139. The Prediction of Regional Wildfire Risk Using High-Resolution Remotely Sensed Soil Moisture Content Estimation, Case Study: Sidi Douma Forest, Saida, Algeria, in: IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, pp. 3387–3390. URL: https://ieeexplore.ieee.org/abstract/document/10281986, doi:10.1109/IGARSS52108.2023.10281986. iSSN: 2153-7003.
  140. Projections of future wildfires impacts on air pollutants and air toxics in a changing climate over the western United States. Environmental Pollution 304, 119213. URL: https://www.sciencedirect.com/science/article/pii/S0269749122004274, doi:10.1016/j.envpol.2022.119213.
  141. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sensing of Environment 136, 455–468. URL: https://www.sciencedirect.com/science/article/pii/S0034425713001831, doi:10.1016/j.rse.2013.05.029.
  142. Integrated wildfire danger models and factors: A review. Science of The Total Environment 899, 165704. URL: https://linkinghub.elsevier.com/retrieve/pii/S0048969723043279, doi:10.1016/j.scitotenv.2023.165704.
  143. A Transformer-based Framework for Multivariate Time Series Representation Learning, in: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Association for Computing Machinery, New York, NY, USA. pp. 2114–2124. URL: https://dl.acm.org/doi/10.1145/3447548.3467401, doi:10.1145/3447548.3467401.
  144. Modeling forest fire probabilities in the south central United States using FIA data. Southern Journal of Applied Forestry 27, 11–17. doi:10.1093/sjaf/27.1.11.
  145. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS Journal of Photogrammetry and Remote Sensing 140, 133–144. URL: https://www.sciencedirect.com/science/article/pii/S0924271617300254, doi:10.1016/j.isprsjprs.2017.07.014.
  146. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. International Journal of Disaster Risk Science 10, 386–403. URL: https://doi.org/10.1007/s13753-019-00233-1, doi:10.1007/s13753-019-00233-1.
  147. Deep neural networks for global wildfire susceptibility modelling. Ecological Indicators 127, 107735. URL: https://www.sciencedirect.com/science/article/pii/S1470160X21004003, doi:10.1016/j.ecolind.2021.107735.
  148. Important meteorological predictors for long-range wildfires in China. Forest Ecology and Management 499, 119638. URL: https://www.sciencedirect.com/science/article/pii/S0378112721007283, doi:10.1016/j.foreco.2021.119638.
  149. Live fuel moisture content estimation from MODIS: A deep learning approach. ISPRS Journal of Photogrammetry and Remote Sensing 179, 81–91. URL: https://www.sciencedirect.com/science/article/pii/S0924271621001957, doi:10.1016/j.isprsjprs.2021.07.010.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com