Statistical algorithms for low-frequency diffusion data: A PDE approach (2405.01372v2)
Abstract: We consider the problem of making nonparametric inference in a class of multi-dimensional diffusions in divergence form, from low-frequency data. Statistical analysis in this setting is notoriously challenging due to the intractability of the likelihood and its gradient, and computational methods have thus far largely resorted to expensive simulation-based techniques. In this article, we propose a new computational approach which is motivated by PDE theory and is built around the characterisation of the transition densities as solutions of the associated heat (Fokker-Planck) equation. Employing optimal regularity results from the theory of parabolic PDEs, we prove a novel characterisation for the gradient of the likelihood. Using these developments, for the nonlinear inverse problem of recovering the diffusivity, we then show that the numerical evaluation of the likelihood and its gradient can be reduced to standard elliptic eigenvalue problems, solvable by powerful finite element methods. This enables the efficient implementation of a large class of popular statistical algorithms, including (i) preconditioned Crank-Nicolson and Langevin-type methods for posterior sampling, and (ii) gradient-based descent optimisation schemes to compute maximum likelihood and maximum-a-posteriori estimates. We showcase the effectiveness of these methods via extensive simulation studies in a nonparametric Bayesian model with Gaussian process priors, in which both the proposed optimisation and sampling schemes provide good numerical recovery. The reproducible code is available online at https://github.com/MattGiord/LF-Diffusion.
- {barticle}[author] \bauthor\bsnmAbraham, \bfnmK.\binitsK. and \bauthor\bsnmNickl, \bfnmR.\binitsR. (\byear2019). \btitleOn statistical Caldéron problems. \bjournalMathematical Statistics and Learning \bvolume2 \bpages165–216. \endbibitem
- {barticle}[author] \bauthor\bsnmAgmon, \bfnmS.\binitsS., \bauthor\bsnmDouglis, \bfnmA.\binitsA. and \bauthor\bsnmNirenberg, \bfnmL.\binitsL. (\byear1964). \btitleEstimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. \bjournalCommunications on Pure and Applied Mathematics \bvolume17 \bpages35-92. \endbibitem
- {barticle}[author] \bauthor\bsnmAït-Sahalia, \bfnmYacine\binitsY. (\byear2002). \btitleMaximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. \bjournalEconometrica \bvolume70 \bpages223–262. \endbibitem
- {barticle}[author] \bauthor\bsnmAït-Sahalia, \bfnmYacine\binitsY. (\byear2008). \btitleClosed-form likelihood expansions for multivariate diffusions. \bjournalThe Annals of Statistics \bvolume36 \bpages906–937. \endbibitem
- {bbook}[author] \bauthor\bsnmAllen, \bfnmE.\binitsE. (\byear2007). \btitleModeling with Itô stochastic differential equations. \bseriesMathematical Modelling: Theory and Applications \bvolume22. \bpublisherSpringer, Dordrecht. \endbibitem
- {barticle}[author] \bauthor\bsnmAltmeyer, \bfnmRandolf\binitsR. (\byear2022). \btitlePolynomial time guarantees for sampling based posterior inference in high-dimensional generalised linear models. \bjournalarXiv preprint arXiv:2208.13296. \endbibitem
- {barticle}[author] \bauthor\bsnmBabuška, \bfnmIvo\binitsI. and \bauthor\bsnmOsborn, \bfnmJohn E\binitsJ. E. (\byear1989). \btitleFinite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. \bjournalMathematics of computation \bvolume52 \bpages275–297. \endbibitem
- {bincollection}[author] \bauthor\bsnmBabuška, \bfnmI.\binitsI. and \bauthor\bsnmOsborn, \bfnmJ.\binitsJ. (\byear1991). \btitleEigenvalue problems. In \bbooktitleFinite Element Methods (Part 1). \bseriesHandbook of Numerical Analysis \bvolume2 \bpages641-787. \bpublisherElsevier. \endbibitem
- {barticle}[author] \bauthor\bsnmbeskos, \bfnmAlexandros\binitsA., \bauthor\bsnmpapaspiliopoulos, \bfnmOmiros\binitsO. and \bauthor\bsnmroberts, \bfnmGareth\binitsG. (\byear2009). \btitleMonte carlo maximum likelihood estimation for discretely observed diffusion processes. \bjournalAnnals of statistics \bvolume37 \bpages223–245. \endbibitem
- {barticle}[author] \bauthor\bsnmBladt, \bfnmMogens\binitsM., \bauthor\bsnmFinch, \bfnmSamuel\binitsS. and \bauthor\bsnmSørensen, \bfnmMichael\binitsM. (\byear2016). \btitleSimulation of multivariate diffusion bridges. \bjournalJournal of the Royal Statistical Society Series B: Statistical Methodology \bvolume78 \bpages343–369. \endbibitem
- {barticle}[author] \bauthor\bsnmBoffi, \bfnmDaniele\binitsD. (\byear2010). \btitleFinite element approximation of eigenvalue problems. \bjournalActa numerica \bvolume19 \bpages1–120. \endbibitem
- {barticle}[author] \bauthor\bsnmBohr, \bfnmJan\binitsJ. and \bauthor\bsnmNickl, \bfnmRichard\binitsR. (\byear2021). \btitleOn log-concave approximations of high-dimensional posterior measures and stability properties in non-linear inverse problems. \bjournalarXiv e-prints arXiv:2105.07835. \endbibitem
- {barticle}[author] \bauthor\bsnmBramble, \bfnmJames H\binitsJ. H. and \bauthor\bsnmOsborn, \bfnmJE\binitsJ. (\byear1973). \btitleRate of convergence estimates for nonselfadjoint eigenvalue approximations. \bjournalMathematics of computation \bvolume27 \bpages525–549. \endbibitem
- {barticle}[author] \bauthor\bsnmBriane, \bfnmVincent\binitsV., \bauthor\bsnmVimond, \bfnmMyriam\binitsM. and \bauthor\bsnmKervrann, \bfnmCharles\binitsC. (\byear2020). \btitleAn overview of diffusion models for intracellular dynamics analysis. \bjournalBriefings in Bioinformatics \bvolume21 \bpages1136–1150. \endbibitem
- {barticle}[author] \bauthor\bsnmChatelin, \bfnmFrançoise\binitsF. (\byear1973). \btitleConvergence of approximation methods to compute eigenelements of linear operations. \bjournalSIAM Journal on Numerical Analysis \bvolume10 \bpages939–948. \endbibitem
- {barticle}[author] \bauthor\bsnmCui, \bfnmTiangang\binitsT., \bauthor\bsnmLaw, \bfnmKody J. H.\binitsK. J. H. and \bauthor\bsnmMarzouk, \bfnmYoussef M.\binitsY. M. (\byear2016). \btitleDimension-independent likelihood-informed MCMC. \bjournalJ. Comput. Phys. \bvolume304 \bpages109–137. \endbibitem
- {barticle}[author] \bauthor\bsnmDalalyan, \bfnmArnak\binitsA. and \bauthor\bsnmReiß, \bfnmMarkus\binitsM. (\byear2007). \btitleAsymptotic statistical equivalence for ergodic diffusions: the multidimensional case. \bjournalProbability theory and related fields \bvolume137 \bpages25–47. \endbibitem
- {barticle}[author] \bauthor\bsnmDaners, \bfnmDaniel\binitsD. (\byear2000). \btitleHeat kernel estimates for operators with boundary conditions. \bjournalMathematische Nachrichten \bvolume217 \bpages13–41. \endbibitem
- {bbook}[author] \bauthor\bsnmDavies, \bfnmE Brian\binitsE. B. (\byear1995). \btitleSpectral theory and differential operators \bvolume42. \bpublisherCambridge University Press. \endbibitem
- {barticle}[author] \bauthor\bsnmDelyon, \bfnmBernard\binitsB. and \bauthor\bsnmHu, \bfnmYing\binitsY. (\byear2006). \btitleSimulation of conditioned diffusion and application to parameter estimation. \bjournalStochastic Processes and their Applications \bvolume116 \bpages1660–1675. \endbibitem
- {barticle}[author] \bauthor\bsnmDescloux, \bfnmJean\binitsJ., \bauthor\bsnmNassif, \bfnmNabil\binitsN. and \bauthor\bsnmRappaz, \bfnmJacques\binitsJ. (\byear1978). \btitleOn spectral approximation. Part 1. The problem of convergence. \bjournalRAIRO. Analyse numérique \bvolume12 \bpages97–112. \endbibitem
- {binproceedings}[author] \bauthor\bsnmDexheimer, \bfnmNiklas\binitsN., \bauthor\bsnmStrauch, \bfnmClaudia\binitsC. and \bauthor\bsnmTrottner, \bfnmLukas\binitsL. (\byear2022). \btitleAdaptive invariant density estimation for continuous-time mixing Markov processes under sup-norm risk. In \bbooktitleAnnales de l’Institut Henri Poincare (B) Probabilites et statistiques \bvolume58 \bpages2029–2064. \bpublisherInstitut Henri Poincaré. \endbibitem
- {barticle}[author] \bauthor\bsnmDurham, \bfnmGarland B\binitsG. B. and \bauthor\bsnmGallant, \bfnmA Ronald\binitsA. R. (\byear2002). \btitleNumerical techniques for maximum likelihood estimation of continuous-time diffusion processes. \bjournalJournal of Business & Economic Statistics \bvolume20 \bpages297–338. \endbibitem
- {barticle}[author] \bauthor\bsnmElerian, \bfnmOla\binitsO., \bauthor\bsnmChib, \bfnmSiddhartha\binitsS. and \bauthor\bsnmShephard, \bfnmNeil\binitsN. (\byear2001). \btitleLikelihood inference for discretely observed nonlinear diffusions. \bjournalEconometrica \bvolume69 \bpages959–993. \endbibitem
- {barticle}[author] \bauthor\bsnmEraker, \bfnmBjørn\binitsB. (\byear2001). \btitleMCMC analysis of diffusion models with application to finance. \bjournalJournal of Business & Economic Statistics \bvolume19 \bpages177–191. \endbibitem
- {bbook}[author] \bauthor\bsnmEvans, \bfnmLawrence C.\binitsL. C. (\byear2010). \btitlePartial differential equations, \beditionSecond ed. \bpublisherAmerican Math. Soc. \endbibitem
- {bbook}[author] \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. and \bauthor\bparticlevan der \bsnmVaart, \bfnmAad W.\binitsA. W. (\byear2017). \btitleFundamentals of Nonparametric Bayesian Inference. \bpublisherCambridge University Press, New York. \endbibitem
- {bbook}[author] \bauthor\bsnmGiné, \bfnmEvarist\binitsE. and \bauthor\bsnmNickl, \bfnmRichard\binitsR. (\byear2016). \btitleMathematical foundations of infinite-dimensional statistical models. \bpublisherCambridge University Press, New York. \endbibitem
- {barticle}[author] \bauthor\bsnmGiordano, \bfnmMatteo\binitsM. and \bauthor\bsnmNickl, \bfnmRichard\binitsR. (\byear2020). \btitleConsistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem. \bjournalInverse Problems, to appear. \endbibitem
- {barticle}[author] \bauthor\bsnmGiordano, \bfnmMatteo\binitsM. and \bauthor\bsnmRay, \bfnmKolyan\binitsK. (\byear2022). \btitleNonparametric Bayesian inference for reversible multidimensional diffusions. \bjournalThe Annals of Statistics \bvolume50 \bpages2872–2898. \endbibitem
- {barticle}[author] \bauthor\bsnmGobet, \bfnmEmmanuel\binitsE., \bauthor\bsnmHoffmann, \bfnmMarc\binitsM. and \bauthor\bsnmReiß, \bfnmMarkus\binitsM. (\byear2004). \btitleNonparametric estimation of scalar diffusions based on low frequency data. \bjournalThe Annals of Statistics \bvolume32 \bpages2223 – 2253. \endbibitem
- {barticle}[author] \bauthor\bsnmGolightly, \bfnmAndrew\binitsA. and \bauthor\bsnmWilkinson, \bfnmDarren J\binitsD. J. (\byear2008). \btitleBayesian inference for nonlinear multivariate diffusion models observed with error. \bjournalComputational Statistics & Data Analysis \bvolume52 \bpages1674–1693. \endbibitem
- {barticle}[author] \bauthor\bsnmHoffmann, \bfnmMarc\binitsM. and \bauthor\bsnmRay, \bfnmKolyan\binitsK. (\byear2022). \btitleBayesian estimation in a multidimensional diffusion model with high frequency data. \bjournalarXiv preprint arXiv:2211.12267. \endbibitem
- {barticle}[author] \bauthor\bsnmKessler, \bfnmMathieu\binitsM. and \bauthor\bsnmSørensen, \bfnmMichael\binitsM. (\byear1999). \btitleEstimating equations based on eigenfunctions for a discretely observed diffusion process. \bjournalBernoulli \bpages299–314. \endbibitem
- {barticle}[author] \bauthor\bsnmKnyazev, \bfnmAndrew V\binitsA. V. and \bauthor\bsnmOsborn, \bfnmJohn E\binitsJ. E. (\byear2006). \btitleNew a priori FEM error estimates for eigenvalues. \bjournalSIAM journal on numerical analysis \bvolume43 \bpages2647–2667. \endbibitem
- {barticle}[author] \bauthor\bsnmKohn, \bfnmRobert\binitsR. and \bauthor\bsnmVogelius, \bfnmMichael\binitsM. (\byear1984). \btitleDetermining conductivity by boundary measurements. \bjournalCommunications on pure and applied mathematics \bvolume37 \bpages289–298. \endbibitem
- {barticle}[author] \bauthor\bsnmLin, \bfnmMing\binitsM., \bauthor\bsnmChen, \bfnmRong\binitsR. and \bauthor\bsnmMykland, \bfnmPer\binitsP. (\byear2010). \btitleOn generating Monte Carlo samples of continuous diffusion bridges. \bjournalJournal of the American Statistical Association \bvolume105 \bpages820–838. \endbibitem
- {bbook}[author] \bauthor\bsnmLions, \bfnmJean-Louis\binitsJ.-L. and \bauthor\bsnmMagenes, \bfnmEnrico\binitsE. (\byear1972). \btitleNon-homogeneous boundary value problems and applications. Vol. I. \bpublisherSpringer-Verlag, New York-Heidelberg. \endbibitem
- {bbook}[author] \bauthor\bsnmLunardi, \bfnmAlessandra\binitsA. (\byear1995). \btitleAnalytic Semigroups and Optimal Regularity for Parabolic Problems. \bpublisherBirkhäuser. \endbibitem
- {bbook}[author] \bauthor\bsnmMajda, \bfnmAndrew J\binitsA. J. and \bauthor\bsnmHarlim, \bfnmJohn\binitsJ. (\byear2012). \btitleFiltering complex turbulent systems. \bpublisherCambridge University Press. \endbibitem
- {barticle}[author] \bauthor\bsnmNachman, \bfnmAdrian I\binitsA. I. (\byear1988). \btitleReconstructions from boundary measurements. \bjournalAnnals of Mathematics \bvolume128 \bpages531–576. \endbibitem
- {bbook}[author] \bauthor\bsnmNickl, \bfnmR.\binitsR. (\byear2023). \btitleBayesian Non-linear Statistical Inverse Problems. \bseriesZurich Lectures in Advanced Mathematics. \bpublisherEMS Press. \endbibitem
- {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. (\byearto appear). \btitleInference for diffusions from low frequency measurements. \bjournalThe Annals of Statistics. \endbibitem
- {binproceedings}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. and \bauthor\bsnmPaternain, \bfnmGabriel P\binitsG. P. (\byear2022). \btitleOn some information-theoretic aspects of non-linear statistical inverse problems. In \bbooktitleProc. Int. Cong. Math \bvolume7 \bpages5516–5538. \endbibitem
- {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. and \bauthor\bsnmRay, \bfnmKolyan\binitsK. (\byear2020). \btitleNonparametric statistical inference for drift vector fields of multi-dimensional diffusions. \bjournalAnn. Statist. \bvolume48 \bpages1383–1408. \endbibitem
- {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. and \bauthor\bsnmSöhl, \bfnmJakob\binitsJ. (\byear2017). \btitleNonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. \bjournalAnn. Statist. \bvolume45 \bpages1664-1693. \endbibitem
- {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR., \bauthor\bparticlevan de \bsnmGeer, \bfnmSara\binitsS. and \bauthor\bsnmWang, \bfnmSven\binitsS. (\byear2020). \btitleConvergence rates for penalized least squares estimators in PDE constrained regression problems. \bjournalSIAM/ASA Journal on Uncertainty Quantification \bvolume8 \bpages374–413. \endbibitem
- {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. and \bauthor\bsnmWang, \bfnmSven\binitsS. (\byear2024). \btitleOn polynomial-time computation of high-dimensional posterior measures by Langevin-type algorithms. \bjournalJournal of the European Mathematical Society \bvolume26 \bpages1031-1112. \endbibitem
- {barticle}[author] \bauthor\bsnmPapaspiliopoulos, \bfnmOmiros\binitsO., \bauthor\bsnmRoberts, \bfnmGareth O\binitsG. O. and \bauthor\bsnmStramer, \bfnmOsnat\binitsO. (\byear2013). \btitleData augmentation for diffusions. \bjournalJournal of Computational and Graphical Statistics \bvolume22 \bpages665–688. \endbibitem
- {barticle}[author] \bauthor\bsnmPedersen, \bfnmAsger Roer\binitsA. R. (\byear1995). \btitleConsistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. \bjournalBernoulli \bpages257–279. \endbibitem
- {barticle}[author] \bauthor\bsnmPeletier, \bfnmMark A.\binitsM. A., \bauthor\bsnmSavaré, \bfnmGiuseppe\binitsG. and \bauthor\bsnmVeneroni, \bfnmMarco\binitsM. (\byear2012). \btitleChemical Reactions as ΓΓ\Gammaroman_Γ-Limit of Diffusion. \bjournalSIAM Review \bvolume54 \bpages327–352. \endbibitem
- {barticle}[author] \bauthor\bsnmPokern, \bfnmY.\binitsY., \bauthor\bsnmStuart, \bfnmA. M.\binitsA. M. and \bauthor\bparticlevan \bsnmZanten, \bfnmJ. H.\binitsJ. H. (\byear2013). \btitlePosterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs. \bjournalStochastic Process. Appl. \bvolume123 \bpages603-628. \endbibitem
- {bbook}[author] \bauthor\bsnmRasmussen, \bfnmCarl Edward\binitsC. E. and \bauthor\bsnmWilliams, \bfnmChristopher\binitsC. (\byear2006). \btitleGaussian processes for machine learning \bvolume2. \bpublisherMIT press Cambridge, MA. \endbibitem
- {barticle}[author] \bauthor\bsnmRichter, \bfnmGerard R.\binitsG. R. (\byear1981). \btitleAn inverse problem for the steady state diffusion equation. \bjournalSIAM J. Appl. Math. \bvolume41 \bpages210–221. \endbibitem
- {barticle}[author] \bauthor\bsnmRoberts, \bfnmGareth O\binitsG. O. and \bauthor\bsnmStramer, \bfnmOsnat\binitsO. (\byear2001). \btitleOn inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm. \bjournalBiometrika \bvolume88 \bpages603–621. \endbibitem
- {barticle}[author] \bauthor\bsnmRoberts, \bfnmGareth O.\binitsG. O. and \bauthor\bsnmTweedie, \bfnmRichard L.\binitsR. L. (\byear1996). \btitleExponential convergence of Langevin distributions and their discrete approximations. \bjournalBernoulli \bvolume2 \bpages341–363. \endbibitem
- {barticle}[author] \bauthor\bsnmSCHAUER, \bfnmMORITZ\binitsM., \bauthor\bsnmVAN DER MEULEN, \bfnmFRANK\binitsF. and \bauthor\bsnmVAN ZANTEN, \bfnmHARRY\binitsH. (\byear2017). \btitleGuided proposals for simulating multi-dimensional diffusion bridges. \bjournalBernoulli \bvolume23 \bpages2917–2950. \endbibitem
- {bbook}[author] \bauthor\bsnmShreve, \bfnmSteven E.\binitsS. E. (\byear2004). \btitleStochastic calculus for finance. II. \bseriesSpringer Finance. \bpublisherSpringer-Verlag, New York \bnoteContinuous-time models. \endbibitem
- {barticle}[author] \bauthor\bsnmSprungk, \bfnmBjörn\binitsB., \bauthor\bsnmWeissmann, \bfnmSimon\binitsS. and \bauthor\bsnmZech, \bfnmJakob\binitsJ. (\byear2023). \btitleMetropolis-adjusted interacting particle sampling. \bjournalarXiv preprint arXiv:2312.13889. \endbibitem
- {barticle}[author] \bauthor\bsnmStuart, \bfnmA. M.\binitsA. M. (\byear2010). \btitleInverse problems: a Bayesian perspective. \bjournalActa Numer. \bvolume19 \bpages451–559. \endbibitem
- {barticle}[author] \bauthor\bsnmTanaka, \bfnmHiroshi\binitsH. (\byear1979). \btitleStochastic differential equations with reflecting boundary condition in convex regions. \bjournalHiroshima Math. J. \bvolume9 \bpages163–177. \endbibitem
- {bbook}[author] \bauthor\bsnmTaylor, \bfnmMichael E.\binitsM. E. (\byear2011). \btitlePartial differential equations I. Basic theory. \bpublisherSpringer, New York. \endbibitem
- {barticle}[author] \bauthor\bsnmTierney, \bfnmLuke\binitsL. (\byear1998). \btitleA note on Metropolis-Hastings kernels for general state spaces. \bjournalAnnals of applied probability \bpages1–9. \endbibitem
- {barticle}[author] \bauthor\bsnmUhlmann, \bfnmGunther\binitsG. (\byear2009). \btitleElectrical impedance tomography and Calderón’s problem. \bjournalInverse problems \bvolume25 \bpages123011. \endbibitem
- {barticle}[author] \bauthor\bsnmVainikko, \bfnmG. M.\binitsG. M. (\byear1964). \btitleAsymptotic error bounds for projection methods in the eigenvalue problem. \bjournalŽ. Vyčisl. Mat i Mat. Fiz. \bvolume4 \bpages405–425. \endbibitem
- {barticle}[author] \bauthor\bparticlevan der \bsnmMeulen, \bfnmFrank\binitsF. and \bauthor\bsnmSchauer, \bfnmMoritz\binitsM. (\byear2017). \btitleBayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals. \bjournalElectronic Journal of Statistics \bvolume11 \bpages2358–2396. \endbibitem
- {barticle}[author] \bauthor\bparticleVan der \bsnmMeulen, \bfnmFH\binitsF., \bauthor\bsnmVan Der Vaart, \bfnmAad W\binitsA. W. and \bauthor\bsnmVan Zanten, \bfnmJH2265666\binitsJ. (\byear2006). \btitleConvergence rates of posterior distributions for Brownian semimartingale models. \bjournalBernoulli \bvolume12 \bpages863–888. \endbibitem
- {bbook}[author] \bauthor\bparticlevan der \bsnmVaart, \bfnmAad\binitsA. \btitleAsymptotic statistics. \bpublisherCambridge University Press, Cambridge. \endbibitem
- {barticle}[author] \bauthor\bparticlevan \bsnmWaaij, \bfnmJan\binitsJ. and \bauthor\bparticlevan \bsnmZanten, \bfnmHarry\binitsH. (\byear2016). \btitleGaussian process methods for one-dimensional diffusions: Optimal rates and adaptation. \bjournalElectronic Journal of Statistics \bvolume10 \bpages628–645. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmSven\binitsS. (\byear2019). \btitleThe nonparametric LAN expansion for discretely observed diffusions. \bjournalElectron. J. Stat. \bvolume13 \bpages1329–1358. \endbibitem