Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical algorithms for low-frequency diffusion data: A PDE approach (2405.01372v2)

Published 2 May 2024 in stat.ME, cs.NA, math.NA, math.ST, stat.CO, and stat.TH

Abstract: We consider the problem of making nonparametric inference in a class of multi-dimensional diffusions in divergence form, from low-frequency data. Statistical analysis in this setting is notoriously challenging due to the intractability of the likelihood and its gradient, and computational methods have thus far largely resorted to expensive simulation-based techniques. In this article, we propose a new computational approach which is motivated by PDE theory and is built around the characterisation of the transition densities as solutions of the associated heat (Fokker-Planck) equation. Employing optimal regularity results from the theory of parabolic PDEs, we prove a novel characterisation for the gradient of the likelihood. Using these developments, for the nonlinear inverse problem of recovering the diffusivity, we then show that the numerical evaluation of the likelihood and its gradient can be reduced to standard elliptic eigenvalue problems, solvable by powerful finite element methods. This enables the efficient implementation of a large class of popular statistical algorithms, including (i) preconditioned Crank-Nicolson and Langevin-type methods for posterior sampling, and (ii) gradient-based descent optimisation schemes to compute maximum likelihood and maximum-a-posteriori estimates. We showcase the effectiveness of these methods via extensive simulation studies in a nonparametric Bayesian model with Gaussian process priors, in which both the proposed optimisation and sampling schemes provide good numerical recovery. The reproducible code is available online at https://github.com/MattGiord/LF-Diffusion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. {barticle}[author] \bauthor\bsnmAbraham, \bfnmK.\binitsK. and \bauthor\bsnmNickl, \bfnmR.\binitsR. (\byear2019). \btitleOn statistical Caldéron problems. \bjournalMathematical Statistics and Learning \bvolume2 \bpages165–216. \endbibitem
  2. {barticle}[author] \bauthor\bsnmAgmon, \bfnmS.\binitsS., \bauthor\bsnmDouglis, \bfnmA.\binitsA. and \bauthor\bsnmNirenberg, \bfnmL.\binitsL. (\byear1964). \btitleEstimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. \bjournalCommunications on Pure and Applied Mathematics \bvolume17 \bpages35-92. \endbibitem
  3. {barticle}[author] \bauthor\bsnmAït-Sahalia, \bfnmYacine\binitsY. (\byear2002). \btitleMaximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. \bjournalEconometrica \bvolume70 \bpages223–262. \endbibitem
  4. {barticle}[author] \bauthor\bsnmAït-Sahalia, \bfnmYacine\binitsY. (\byear2008). \btitleClosed-form likelihood expansions for multivariate diffusions. \bjournalThe Annals of Statistics \bvolume36 \bpages906–937. \endbibitem
  5. {bbook}[author] \bauthor\bsnmAllen, \bfnmE.\binitsE. (\byear2007). \btitleModeling with Itô stochastic differential equations. \bseriesMathematical Modelling: Theory and Applications \bvolume22. \bpublisherSpringer, Dordrecht. \endbibitem
  6. {barticle}[author] \bauthor\bsnmAltmeyer, \bfnmRandolf\binitsR. (\byear2022). \btitlePolynomial time guarantees for sampling based posterior inference in high-dimensional generalised linear models. \bjournalarXiv preprint arXiv:2208.13296. \endbibitem
  7. {barticle}[author] \bauthor\bsnmBabuška, \bfnmIvo\binitsI. and \bauthor\bsnmOsborn, \bfnmJohn E\binitsJ. E. (\byear1989). \btitleFinite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. \bjournalMathematics of computation \bvolume52 \bpages275–297. \endbibitem
  8. {bincollection}[author] \bauthor\bsnmBabuška, \bfnmI.\binitsI. and \bauthor\bsnmOsborn, \bfnmJ.\binitsJ. (\byear1991). \btitleEigenvalue problems. In \bbooktitleFinite Element Methods (Part 1). \bseriesHandbook of Numerical Analysis \bvolume2 \bpages641-787. \bpublisherElsevier. \endbibitem
  9. {barticle}[author] \bauthor\bsnmbeskos, \bfnmAlexandros\binitsA., \bauthor\bsnmpapaspiliopoulos, \bfnmOmiros\binitsO. and \bauthor\bsnmroberts, \bfnmGareth\binitsG. (\byear2009). \btitleMonte carlo maximum likelihood estimation for discretely observed diffusion processes. \bjournalAnnals of statistics \bvolume37 \bpages223–245. \endbibitem
  10. {barticle}[author] \bauthor\bsnmBladt, \bfnmMogens\binitsM., \bauthor\bsnmFinch, \bfnmSamuel\binitsS. and \bauthor\bsnmSørensen, \bfnmMichael\binitsM. (\byear2016). \btitleSimulation of multivariate diffusion bridges. \bjournalJournal of the Royal Statistical Society Series B: Statistical Methodology \bvolume78 \bpages343–369. \endbibitem
  11. {barticle}[author] \bauthor\bsnmBoffi, \bfnmDaniele\binitsD. (\byear2010). \btitleFinite element approximation of eigenvalue problems. \bjournalActa numerica \bvolume19 \bpages1–120. \endbibitem
  12. {barticle}[author] \bauthor\bsnmBohr, \bfnmJan\binitsJ. and \bauthor\bsnmNickl, \bfnmRichard\binitsR. (\byear2021). \btitleOn log-concave approximations of high-dimensional posterior measures and stability properties in non-linear inverse problems. \bjournalarXiv e-prints arXiv:2105.07835. \endbibitem
  13. {barticle}[author] \bauthor\bsnmBramble, \bfnmJames H\binitsJ. H. and \bauthor\bsnmOsborn, \bfnmJE\binitsJ. (\byear1973). \btitleRate of convergence estimates for nonselfadjoint eigenvalue approximations. \bjournalMathematics of computation \bvolume27 \bpages525–549. \endbibitem
  14. {barticle}[author] \bauthor\bsnmBriane, \bfnmVincent\binitsV., \bauthor\bsnmVimond, \bfnmMyriam\binitsM. and \bauthor\bsnmKervrann, \bfnmCharles\binitsC. (\byear2020). \btitleAn overview of diffusion models for intracellular dynamics analysis. \bjournalBriefings in Bioinformatics \bvolume21 \bpages1136–1150. \endbibitem
  15. {barticle}[author] \bauthor\bsnmChatelin, \bfnmFrançoise\binitsF. (\byear1973). \btitleConvergence of approximation methods to compute eigenelements of linear operations. \bjournalSIAM Journal on Numerical Analysis \bvolume10 \bpages939–948. \endbibitem
  16. {barticle}[author] \bauthor\bsnmCui, \bfnmTiangang\binitsT., \bauthor\bsnmLaw, \bfnmKody J. H.\binitsK. J. H. and \bauthor\bsnmMarzouk, \bfnmYoussef M.\binitsY. M. (\byear2016). \btitleDimension-independent likelihood-informed MCMC. \bjournalJ. Comput. Phys. \bvolume304 \bpages109–137. \endbibitem
  17. {barticle}[author] \bauthor\bsnmDalalyan, \bfnmArnak\binitsA. and \bauthor\bsnmReiß, \bfnmMarkus\binitsM. (\byear2007). \btitleAsymptotic statistical equivalence for ergodic diffusions: the multidimensional case. \bjournalProbability theory and related fields \bvolume137 \bpages25–47. \endbibitem
  18. {barticle}[author] \bauthor\bsnmDaners, \bfnmDaniel\binitsD. (\byear2000). \btitleHeat kernel estimates for operators with boundary conditions. \bjournalMathematische Nachrichten \bvolume217 \bpages13–41. \endbibitem
  19. {bbook}[author] \bauthor\bsnmDavies, \bfnmE Brian\binitsE. B. (\byear1995). \btitleSpectral theory and differential operators \bvolume42. \bpublisherCambridge University Press. \endbibitem
  20. {barticle}[author] \bauthor\bsnmDelyon, \bfnmBernard\binitsB. and \bauthor\bsnmHu, \bfnmYing\binitsY. (\byear2006). \btitleSimulation of conditioned diffusion and application to parameter estimation. \bjournalStochastic Processes and their Applications \bvolume116 \bpages1660–1675. \endbibitem
  21. {barticle}[author] \bauthor\bsnmDescloux, \bfnmJean\binitsJ., \bauthor\bsnmNassif, \bfnmNabil\binitsN. and \bauthor\bsnmRappaz, \bfnmJacques\binitsJ. (\byear1978). \btitleOn spectral approximation. Part 1. The problem of convergence. \bjournalRAIRO. Analyse numérique \bvolume12 \bpages97–112. \endbibitem
  22. {binproceedings}[author] \bauthor\bsnmDexheimer, \bfnmNiklas\binitsN., \bauthor\bsnmStrauch, \bfnmClaudia\binitsC. and \bauthor\bsnmTrottner, \bfnmLukas\binitsL. (\byear2022). \btitleAdaptive invariant density estimation for continuous-time mixing Markov processes under sup-norm risk. In \bbooktitleAnnales de l’Institut Henri Poincare (B) Probabilites et statistiques \bvolume58 \bpages2029–2064. \bpublisherInstitut Henri Poincaré. \endbibitem
  23. {barticle}[author] \bauthor\bsnmDurham, \bfnmGarland B\binitsG. B. and \bauthor\bsnmGallant, \bfnmA Ronald\binitsA. R. (\byear2002). \btitleNumerical techniques for maximum likelihood estimation of continuous-time diffusion processes. \bjournalJournal of Business & Economic Statistics \bvolume20 \bpages297–338. \endbibitem
  24. {barticle}[author] \bauthor\bsnmElerian, \bfnmOla\binitsO., \bauthor\bsnmChib, \bfnmSiddhartha\binitsS. and \bauthor\bsnmShephard, \bfnmNeil\binitsN. (\byear2001). \btitleLikelihood inference for discretely observed nonlinear diffusions. \bjournalEconometrica \bvolume69 \bpages959–993. \endbibitem
  25. {barticle}[author] \bauthor\bsnmEraker, \bfnmBjørn\binitsB. (\byear2001). \btitleMCMC analysis of diffusion models with application to finance. \bjournalJournal of Business & Economic Statistics \bvolume19 \bpages177–191. \endbibitem
  26. {bbook}[author] \bauthor\bsnmEvans, \bfnmLawrence C.\binitsL. C. (\byear2010). \btitlePartial differential equations, \beditionSecond ed. \bpublisherAmerican Math. Soc. \endbibitem
  27. {bbook}[author] \bauthor\bsnmGhosal, \bfnmSubhashis\binitsS. and \bauthor\bparticlevan der \bsnmVaart, \bfnmAad W.\binitsA. W. (\byear2017). \btitleFundamentals of Nonparametric Bayesian Inference. \bpublisherCambridge University Press, New York. \endbibitem
  28. {bbook}[author] \bauthor\bsnmGiné, \bfnmEvarist\binitsE. and \bauthor\bsnmNickl, \bfnmRichard\binitsR. (\byear2016). \btitleMathematical foundations of infinite-dimensional statistical models. \bpublisherCambridge University Press, New York. \endbibitem
  29. {barticle}[author] \bauthor\bsnmGiordano, \bfnmMatteo\binitsM. and \bauthor\bsnmNickl, \bfnmRichard\binitsR. (\byear2020). \btitleConsistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem. \bjournalInverse Problems, to appear. \endbibitem
  30. {barticle}[author] \bauthor\bsnmGiordano, \bfnmMatteo\binitsM. and \bauthor\bsnmRay, \bfnmKolyan\binitsK. (\byear2022). \btitleNonparametric Bayesian inference for reversible multidimensional diffusions. \bjournalThe Annals of Statistics \bvolume50 \bpages2872–2898. \endbibitem
  31. {barticle}[author] \bauthor\bsnmGobet, \bfnmEmmanuel\binitsE., \bauthor\bsnmHoffmann, \bfnmMarc\binitsM. and \bauthor\bsnmReiß, \bfnmMarkus\binitsM. (\byear2004). \btitleNonparametric estimation of scalar diffusions based on low frequency data. \bjournalThe Annals of Statistics \bvolume32 \bpages2223 – 2253. \endbibitem
  32. {barticle}[author] \bauthor\bsnmGolightly, \bfnmAndrew\binitsA. and \bauthor\bsnmWilkinson, \bfnmDarren J\binitsD. J. (\byear2008). \btitleBayesian inference for nonlinear multivariate diffusion models observed with error. \bjournalComputational Statistics & Data Analysis \bvolume52 \bpages1674–1693. \endbibitem
  33. {barticle}[author] \bauthor\bsnmHoffmann, \bfnmMarc\binitsM. and \bauthor\bsnmRay, \bfnmKolyan\binitsK. (\byear2022). \btitleBayesian estimation in a multidimensional diffusion model with high frequency data. \bjournalarXiv preprint arXiv:2211.12267. \endbibitem
  34. {barticle}[author] \bauthor\bsnmKessler, \bfnmMathieu\binitsM. and \bauthor\bsnmSørensen, \bfnmMichael\binitsM. (\byear1999). \btitleEstimating equations based on eigenfunctions for a discretely observed diffusion process. \bjournalBernoulli \bpages299–314. \endbibitem
  35. {barticle}[author] \bauthor\bsnmKnyazev, \bfnmAndrew V\binitsA. V. and \bauthor\bsnmOsborn, \bfnmJohn E\binitsJ. E. (\byear2006). \btitleNew a priori FEM error estimates for eigenvalues. \bjournalSIAM journal on numerical analysis \bvolume43 \bpages2647–2667. \endbibitem
  36. {barticle}[author] \bauthor\bsnmKohn, \bfnmRobert\binitsR. and \bauthor\bsnmVogelius, \bfnmMichael\binitsM. (\byear1984). \btitleDetermining conductivity by boundary measurements. \bjournalCommunications on pure and applied mathematics \bvolume37 \bpages289–298. \endbibitem
  37. {barticle}[author] \bauthor\bsnmLin, \bfnmMing\binitsM., \bauthor\bsnmChen, \bfnmRong\binitsR. and \bauthor\bsnmMykland, \bfnmPer\binitsP. (\byear2010). \btitleOn generating Monte Carlo samples of continuous diffusion bridges. \bjournalJournal of the American Statistical Association \bvolume105 \bpages820–838. \endbibitem
  38. {bbook}[author] \bauthor\bsnmLions, \bfnmJean-Louis\binitsJ.-L. and \bauthor\bsnmMagenes, \bfnmEnrico\binitsE. (\byear1972). \btitleNon-homogeneous boundary value problems and applications. Vol. I. \bpublisherSpringer-Verlag, New York-Heidelberg. \endbibitem
  39. {bbook}[author] \bauthor\bsnmLunardi, \bfnmAlessandra\binitsA. (\byear1995). \btitleAnalytic Semigroups and Optimal Regularity for Parabolic Problems. \bpublisherBirkhäuser. \endbibitem
  40. {bbook}[author] \bauthor\bsnmMajda, \bfnmAndrew J\binitsA. J. and \bauthor\bsnmHarlim, \bfnmJohn\binitsJ. (\byear2012). \btitleFiltering complex turbulent systems. \bpublisherCambridge University Press. \endbibitem
  41. {barticle}[author] \bauthor\bsnmNachman, \bfnmAdrian I\binitsA. I. (\byear1988). \btitleReconstructions from boundary measurements. \bjournalAnnals of Mathematics \bvolume128 \bpages531–576. \endbibitem
  42. {bbook}[author] \bauthor\bsnmNickl, \bfnmR.\binitsR. (\byear2023). \btitleBayesian Non-linear Statistical Inverse Problems. \bseriesZurich Lectures in Advanced Mathematics. \bpublisherEMS Press. \endbibitem
  43. {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. (\byearto appear). \btitleInference for diffusions from low frequency measurements. \bjournalThe Annals of Statistics. \endbibitem
  44. {binproceedings}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. and \bauthor\bsnmPaternain, \bfnmGabriel P\binitsG. P. (\byear2022). \btitleOn some information-theoretic aspects of non-linear statistical inverse problems. In \bbooktitleProc. Int. Cong. Math \bvolume7 \bpages5516–5538. \endbibitem
  45. {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. and \bauthor\bsnmRay, \bfnmKolyan\binitsK. (\byear2020). \btitleNonparametric statistical inference for drift vector fields of multi-dimensional diffusions. \bjournalAnn. Statist. \bvolume48 \bpages1383–1408. \endbibitem
  46. {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. and \bauthor\bsnmSöhl, \bfnmJakob\binitsJ. (\byear2017). \btitleNonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. \bjournalAnn. Statist. \bvolume45 \bpages1664-1693. \endbibitem
  47. {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR., \bauthor\bparticlevan de \bsnmGeer, \bfnmSara\binitsS. and \bauthor\bsnmWang, \bfnmSven\binitsS. (\byear2020). \btitleConvergence rates for penalized least squares estimators in PDE constrained regression problems. \bjournalSIAM/ASA Journal on Uncertainty Quantification \bvolume8 \bpages374–413. \endbibitem
  48. {barticle}[author] \bauthor\bsnmNickl, \bfnmRichard\binitsR. and \bauthor\bsnmWang, \bfnmSven\binitsS. (\byear2024). \btitleOn polynomial-time computation of high-dimensional posterior measures by Langevin-type algorithms. \bjournalJournal of the European Mathematical Society \bvolume26 \bpages1031-1112. \endbibitem
  49. {barticle}[author] \bauthor\bsnmPapaspiliopoulos, \bfnmOmiros\binitsO., \bauthor\bsnmRoberts, \bfnmGareth O\binitsG. O. and \bauthor\bsnmStramer, \bfnmOsnat\binitsO. (\byear2013). \btitleData augmentation for diffusions. \bjournalJournal of Computational and Graphical Statistics \bvolume22 \bpages665–688. \endbibitem
  50. {barticle}[author] \bauthor\bsnmPedersen, \bfnmAsger Roer\binitsA. R. (\byear1995). \btitleConsistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. \bjournalBernoulli \bpages257–279. \endbibitem
  51. {barticle}[author] \bauthor\bsnmPeletier, \bfnmMark A.\binitsM. A., \bauthor\bsnmSavaré, \bfnmGiuseppe\binitsG. and \bauthor\bsnmVeneroni, \bfnmMarco\binitsM. (\byear2012). \btitleChemical Reactions as ΓΓ\Gammaroman_Γ-Limit of Diffusion. \bjournalSIAM Review \bvolume54 \bpages327–352. \endbibitem
  52. {barticle}[author] \bauthor\bsnmPokern, \bfnmY.\binitsY., \bauthor\bsnmStuart, \bfnmA. M.\binitsA. M. and \bauthor\bparticlevan \bsnmZanten, \bfnmJ. H.\binitsJ. H. (\byear2013). \btitlePosterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs. \bjournalStochastic Process. Appl. \bvolume123 \bpages603-628. \endbibitem
  53. {bbook}[author] \bauthor\bsnmRasmussen, \bfnmCarl Edward\binitsC. E. and \bauthor\bsnmWilliams, \bfnmChristopher\binitsC. (\byear2006). \btitleGaussian processes for machine learning \bvolume2. \bpublisherMIT press Cambridge, MA. \endbibitem
  54. {barticle}[author] \bauthor\bsnmRichter, \bfnmGerard R.\binitsG. R. (\byear1981). \btitleAn inverse problem for the steady state diffusion equation. \bjournalSIAM J. Appl. Math. \bvolume41 \bpages210–221. \endbibitem
  55. {barticle}[author] \bauthor\bsnmRoberts, \bfnmGareth O\binitsG. O. and \bauthor\bsnmStramer, \bfnmOsnat\binitsO. (\byear2001). \btitleOn inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm. \bjournalBiometrika \bvolume88 \bpages603–621. \endbibitem
  56. {barticle}[author] \bauthor\bsnmRoberts, \bfnmGareth O.\binitsG. O. and \bauthor\bsnmTweedie, \bfnmRichard L.\binitsR. L. (\byear1996). \btitleExponential convergence of Langevin distributions and their discrete approximations. \bjournalBernoulli \bvolume2 \bpages341–363. \endbibitem
  57. {barticle}[author] \bauthor\bsnmSCHAUER, \bfnmMORITZ\binitsM., \bauthor\bsnmVAN DER MEULEN, \bfnmFRANK\binitsF. and \bauthor\bsnmVAN ZANTEN, \bfnmHARRY\binitsH. (\byear2017). \btitleGuided proposals for simulating multi-dimensional diffusion bridges. \bjournalBernoulli \bvolume23 \bpages2917–2950. \endbibitem
  58. {bbook}[author] \bauthor\bsnmShreve, \bfnmSteven E.\binitsS. E. (\byear2004). \btitleStochastic calculus for finance. II. \bseriesSpringer Finance. \bpublisherSpringer-Verlag, New York \bnoteContinuous-time models. \endbibitem
  59. {barticle}[author] \bauthor\bsnmSprungk, \bfnmBjörn\binitsB., \bauthor\bsnmWeissmann, \bfnmSimon\binitsS. and \bauthor\bsnmZech, \bfnmJakob\binitsJ. (\byear2023). \btitleMetropolis-adjusted interacting particle sampling. \bjournalarXiv preprint arXiv:2312.13889. \endbibitem
  60. {barticle}[author] \bauthor\bsnmStuart, \bfnmA. M.\binitsA. M. (\byear2010). \btitleInverse problems: a Bayesian perspective. \bjournalActa Numer. \bvolume19 \bpages451–559. \endbibitem
  61. {barticle}[author] \bauthor\bsnmTanaka, \bfnmHiroshi\binitsH. (\byear1979). \btitleStochastic differential equations with reflecting boundary condition in convex regions. \bjournalHiroshima Math. J. \bvolume9 \bpages163–177. \endbibitem
  62. {bbook}[author] \bauthor\bsnmTaylor, \bfnmMichael E.\binitsM. E. (\byear2011). \btitlePartial differential equations I. Basic theory. \bpublisherSpringer, New York. \endbibitem
  63. {barticle}[author] \bauthor\bsnmTierney, \bfnmLuke\binitsL. (\byear1998). \btitleA note on Metropolis-Hastings kernels for general state spaces. \bjournalAnnals of applied probability \bpages1–9. \endbibitem
  64. {barticle}[author] \bauthor\bsnmUhlmann, \bfnmGunther\binitsG. (\byear2009). \btitleElectrical impedance tomography and Calderón’s problem. \bjournalInverse problems \bvolume25 \bpages123011. \endbibitem
  65. {barticle}[author] \bauthor\bsnmVainikko, \bfnmG. M.\binitsG. M. (\byear1964). \btitleAsymptotic error bounds for projection methods in the eigenvalue problem. \bjournalŽ. Vyčisl. Mat i Mat. Fiz. \bvolume4 \bpages405–425. \endbibitem
  66. {barticle}[author] \bauthor\bparticlevan der \bsnmMeulen, \bfnmFrank\binitsF. and \bauthor\bsnmSchauer, \bfnmMoritz\binitsM. (\byear2017). \btitleBayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals. \bjournalElectronic Journal of Statistics \bvolume11 \bpages2358–2396. \endbibitem
  67. {barticle}[author] \bauthor\bparticleVan der \bsnmMeulen, \bfnmFH\binitsF., \bauthor\bsnmVan Der Vaart, \bfnmAad W\binitsA. W. and \bauthor\bsnmVan Zanten, \bfnmJH2265666\binitsJ. (\byear2006). \btitleConvergence rates of posterior distributions for Brownian semimartingale models. \bjournalBernoulli \bvolume12 \bpages863–888. \endbibitem
  68. {bbook}[author] \bauthor\bparticlevan der \bsnmVaart, \bfnmAad\binitsA. \btitleAsymptotic statistics. \bpublisherCambridge University Press, Cambridge. \endbibitem
  69. {barticle}[author] \bauthor\bparticlevan \bsnmWaaij, \bfnmJan\binitsJ. and \bauthor\bparticlevan \bsnmZanten, \bfnmHarry\binitsH. (\byear2016). \btitleGaussian process methods for one-dimensional diffusions: Optimal rates and adaptation. \bjournalElectronic Journal of Statistics \bvolume10 \bpages628–645. \endbibitem
  70. {barticle}[author] \bauthor\bsnmWang, \bfnmSven\binitsS. (\byear2019). \btitleThe nonparametric LAN expansion for discretely observed diffusions. \bjournalElectron. J. Stat. \bvolume13 \bpages1329–1358. \endbibitem

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com