Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Online Ensembles of Basis Expansions (2405.01365v1)

Published 2 May 2024 in cs.LG, eess.SP, and stat.ML

Abstract: Practical Bayesian learning often requires (1) online inference, (2) dynamic models, and (3) ensembling over multiple different models. Recent advances have shown how to use random feature approximations to achieve scalable, online ensembling of Gaussian processes with desirable theoretical properties and fruitful applications. One key to these methods' success is the inclusion of a random walk on the model parameters, which makes models dynamic. We show that these methods can be generalized easily to any basis expansion model and that using alternative basis expansions, such as Hilbert space Gaussian processes, often results in better performance. To simplify the process of choosing a specific basis expansion, our method's generality also allows the ensembling of several entirely different models, for example, a Gaussian process and polynomial regression. Finally, we propose a novel method to ensemble static and dynamic models together.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com