Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Predictive Guidance for Fuel-Optimal Landing of Reusable Launch Vehicles (2405.01264v1)

Published 2 May 2024 in eess.SY and cs.SY

Abstract: This paper introduces a landing guidance strategy for reusable launch vehicles (RLVs) using a model predictive approach based on sequential convex programming (SCP). The proposed approach devises two distinct optimal control problems (OCPs): planning a fuel-optimal landing trajectory that accommodates practical path constraints specific to RLVs, and determining real-time optimal tracking commands. This dual optimization strategy allows for reduced computational load through adjustable prediction horizon lengths in the tracking task, achieving near closed-loop performance. Enhancements in model fidelity for the tracking task are achieved through an alternative rotational dynamics representation, enabling a more stable numerical solution of the OCP and accounting for vehicle transient dynamics. Furthermore, modifications of aerodynamic force in both planning and tracking phases are proposed, tailored for thrust-vector-controlled RLVs, to reduce the fidelity gap without adding computational complexity. Extensive 6-DOF simulation experiments validate the effectiveness and improved guidance performance of the proposed algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Reddy, V. S., “The SpaceX Effect,” New Space, Vol. 6, No. 2, 2018, pp. 125–134. 10.1089/space.2017.0032.
  2. Harpold, J. C., and Gavert, D. E., “Space Shuttle entry guidance performance results,” Journal of Guidance, Control, and Dynamics, Vol. 6, No. 6, 1983, pp. 442–447. 10.2514/3.8523.
  3. Kafer, G., “Space shuttle entry/landing flight control design description,” Guidance and Control Conference, 1982, p. 1601. 10.2514/6.1982-1601.
  4. Blackmore, L., “Autonomous precision landing of space rockets,” Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium, Vol. 46, The Bridge Washington, DC, 2016, pp. 15–20.
  5. Cherry, G., “A general, explicit, optimizing guidance law for rocket-propelled spaceflight,” Astrodynamics Guidance and Control Conference, 1964, p. 638. 10.2514/6.1964-638.
  6. Klumpp, A. R., “Apollo lunar descent guidance,” Automatica, Vol. 10, No. 2, 1974, pp. 133–146. 10.1016/0005-1098(74)90019-3.
  7. Guo, Y., Hawkins, M., and Wie, B., “Waypoint-Optimized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance for Mars Landing,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 3, 2013, pp. 799–809. 10.2514/1.58098.
  8. Wang, P., Guo, Y., Ma, G., and Wie, B., “Two-phase zero-effort-miss/zero-effort-velocity guidance for mars landing,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 1, 2021, pp. 75–87. 10.2514/1.G005242.
  9. Açikmeşe, B., and Ploen, S. R., “Convex programming approach to powered descent guidance for mars landing,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366. 10.2514/1.27553.
  10. Blackmore, L., Açikmeşe, B., and Scharf, D. P., “Minimum-landing-error powered-descent guidance for mars landing using convex optimization,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4, 2010, pp. 1161–1171. 10.2514/1.47202.
  11. Scharf, D. P., Açíkmeşe, B., Dueri, D., Benito, J., and Casoliva, J., “Implementation and experimental demonstration of onboard powered-descent guidance,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 213–229. 10.2514/1.G000399.
  12. Dueri, D., Açíkmeşe, B., Scharf, D. P., Harris, M. W., Cloutier, J. R., Evers, J. H., and Feeley, J. J., “Customized real-time interior-point methods for onboard powered-descent guidance,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 197–212. 10.2514/1.G001480.
  13. Liu, X., and Lu, P., “Solving Nonconvex Optimal Control Problems by Convex Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750–765. 10.2514/1.62110.
  14. Mao, Y., Szmuk, M., and Açıkmeşe, B., “Successive convexification of non-convex optimal control problems and its convergence properties,” 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016, pp. 3636–3641. 10.1109/CDC.2016.7798816.
  15. Szmuk, M., Açıkmese, B., Berning, A. W., and Huntington, G., “Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints,” 2016 AIAA Guidance, Navigation, and Control Conference, 2016, pp. 1–16. 10.2514/6.2016-0378, iSBN: 9781624103896.
  16. Wang, Z., and Grant, M. J., “Constrained trajectory optimization for planetary entry via sequential convex programming,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2603–2615. 10.2514/1.G002150.
  17. Liu, X., Shen, Z., and Lu, P., “Exact convex relaxation for optimal flight of aerodynamically controlled missiles,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 4, 2016, pp. 1881–1892. 10.1109/TAES.2016.150741.
  18. Wang, J., Cui, N., and Wei, C., “Optimal rocket landing guidance using convex optimization and model predictive control,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 5, 2019, pp. 1078–1092. 10.2514/1.G003518.
  19. Jung, C.-G., Kim, B., Jung, K.-W., and Lee, C.-H., “Thrust Integrated Trajectory Optimization for Multipulse Rocket Missiles Using Convex Programming,” Journal of Spacecraft and Rockets, 2023, pp. 1–15. 10.2514/1.a35524.
  20. Szmuk, M., Eren, U., and Acikmese, B., “Successive Convexification for Mars 6-DoF Powered Descent Landing Guidance,” AIAA Guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics, Grapevine, Texas, 2017, p. 1500. 10.2514/6.2017-1500.
  21. Szmuk, M., Reynolds, T. P., and Açıkmeşe, B., “Successive convexification for real-time six-degree-of-freedom powered descent guidance with state-triggered constraints,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020, pp. 1399–1413. 10.2514/1.G004549.
  22. Sagliano, M., Heidecker, A., Macés Hernández, J., Farì, S., Schlotterer, M., Woicke, S., Seelbinder, D., and Dumont, E., “Onboard Guidance for Reusable Rockets: Aerodynamic Descent and Powered Landing,” AIAA Scitech 2021 Forum, American Institute of Aeronautics and Astronautics, VIRTUAL EVENT, 2021, p. 0862. 10.2514/6.2021-0862.
  23. Bollino, K., Oppenheimer, M., and Doman, D., “Optimal Guidance Command Generation and Tracking for Reusable Launch Vehicle Reentry,” AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, Keystone, Colorado, 2006, p. 6691. 10.2514/6.2006-6691.
  24. Lu, P., and Callan, R., “Propellant-Optimal Powered Descent Guidance Revisited,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 2, 2023a, pp. 215–230. 10.2514/1.G007214.
  25. Sagliano, M., Hernández, J. A. M., Farì, S., Heidecker, A., Schlotterer, M., Woicke, S., Seelbinder, D., Krummen, S., and Dumont, E., “Unified-Loop Structured H-Infinity Control for Aerodynamic Steering of Reusable Rockets,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 5, 2023, pp. 815–837. 10.2514/1.G007077.
  26. Orr, J. S., Wall, J. H., VanZwieten, T. S., and Hall, C. E., “Space launch system ascent flight control design,” Advances in the Astronautical Sciences, Vol. 151, 2014, pp. 141–154. ISBN: 9780877036098.
  27. Guadagnini, J., Lavagna, M., and Rosa, P., “Model predictive control for reusable space launcher guidance improvement,” Acta Astronautica, Vol. 193, No. October 2021, 2022, pp. 767–778. 10.1016/j.actaastro.2021.10.014.
  28. Pei, C., Wan, C., Dai, R., and Rea, J. R., “A Hybrid ADMM for Six-Degree-of-Freedom Entry Trajectory Optimization Based on Dual Quaternions,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 59, No. 3, 2023, pp. 3280–3295. 10.1109/TAES.2022.3223333.
  29. Kamath, A. G., Elango, P., Mceowen, S., Yu, Y., Carson, J. M., Mesbahi, M., and Acikmese, B., “Customized Real-Time First-Order Methods for Onboard Dual Quaternion-based 6-DoF Powered-Descent Guidance,” AIAA SCITECH 2023 Forum, American Institute of Aeronautics and Astronautics, National Harbor, MD & Online, 2023, p. 2003. 10.2514/6.2023-2003.
  30. Lu, P., “Propellant-optimal powered descent guidance,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 4, 2018, pp. 813–826. 10.2514/1.G003243.
  31. Ridderhof, J., and Tsiotras, P., “Minimum-fuel closed-loop powered descent guidance with stochastically derived throttle margins,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 3, 2021, pp. 537–547. 10.2514/1.G005400.
  32. Chen, R. H., Speyer, J. L., and Lianos, D., “Optimal intercept missile guidance strategies with autopilot lag,” Journal of guidance, control, and dynamics, Vol. 33, No. 4, 2010, pp. 1264–1272. 10.2514/1.44618.
  33. Yang, R., Liu, X., and Lin, D., “Exact Relaxation of Nonconvex Optimal Control Problems Based on Problem Reconstruction,” Journal of Guidance, Control, and Dynamics, 2024, pp. 1–9. 10.2514/1.G007788.
  34. Harris, M. W., and Açıkmeşe, B., “Lossless convexification of non-convex optimal control problems for state constrained linear systems,” Automatica, Vol. 50, No. 9, 2014, pp. 2304–2311. 10.1016/j.automatica.2014.06.008.
  35. Liu, X., Shen, Z., and Lu, P., “Closed-Loop Optimization of Guidance Gain for Constrained Impact,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 453–460. 10.2514/1.G000323.
  36. Lu, P., and Callan, R., “Propellant-Optimal Powered Descent Guidance Revisited,” Journal of Guidance, Control, and Dynamics, Vol. 46, No. 2, 2023b, pp. 215–230. 10.2514/1.G007214.
  37. OCLC: ocn772627669.
  38. Alizadeh, F., and Goldfarb, D., “Second-order cone programming,” Mathematical programming, Vol. 95, No. 1, 2003, pp. 3–51.
  39. Lee, C. H., Jun, B. E., and Lee, J. I., “Connections between Linear and Nonlinear Missile Autopilots via Three-Loop Topology,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 6, 2016, pp. 1424–1430. 10.2514/1.G001565.
  40. Simplício, P., Marcos, A., and Bennani, S., “Reusable Launchers: Development of a Coupled Flight Mechanics, Guidance, and Control Benchmark,” Journal of Spacecraft and Rockets, Vol. 57, No. 1, 2020, pp. 74–89. 10.2514/1.A34429.
  41. Domahidi, A., Chu, E., and Boyd, S., “ECOS: An SOCP Solver for Embedded Systems,” 2013 European Control Conference, ECC 2013, 2013, pp. 3071–3076. 10.23919/ecc.2013.6669541.
  42. Mattingley, J., and Boyd, S., “CVXGEN: A Code Generator for Embedded Convex Optimization,” Optimization and Engineering, Vol. 13, No. 1, 2012, pp. 1–27. 10.1007/s11081-011-9176-9.
  43. Patterson, M. A., and Rao, A. V., “GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming,” ACM Trans. Math. Softw., Vol. 41, No. 1, 2014. 10.1145/2558904.

Summary

We haven't generated a summary for this paper yet.