Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information (2405.01065v1)

Published 2 May 2024 in cs.CV

Abstract: Change detection as an interdisciplinary discipline in the field of computer vision and remote sensing at present has been receiving extensive attention and research. Due to the rapid development of society, the geographic information captured by remote sensing satellites is changing faster and more complex, which undoubtedly poses a higher challenge and highlights the value of change detection tasks. We propose MFDS-Net: Multi-Scale Feature Depth-Supervised Network for Remote Sensing Change Detection with Global Semantic and Detail Information (MFDS-Net) with the aim of achieving a more refined description of changing buildings as well as geographic information, enhancing the localisation of changing targets and the acquisition of weak features. To achieve the research objectives, we use a modified ResNet_34 as backbone network to perform feature extraction and DO-Conv as an alternative to traditional convolution to better focus on the association between feature information and to obtain better training results. We propose the Global Semantic Enhancement Module (GSEM) to enhance the processing of high-level semantic information from a global perspective. The Differential Feature Integration Module (DFIM) is proposed to strengthen the fusion of different depth feature information, achieving learning and extraction of differential features. The entire network is trained and optimized using a deep supervision mechanism. The experimental outcomes of MFDS-Net surpass those of current mainstream change detection networks. On the LEVIR dataset, it achieved an F1 score of 91.589 and IoU of 84.483, on the WHU dataset, the scores were F1: 92.384 and IoU: 86.807, and on the GZ-CD dataset, the scores were F1: 86.377 and IoU: 76.021. The code is available at https://github.com/AOZAKIiii/MFDS-Net

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. L. Zhu, J. Suomalainen, J. Liu, J. Hyyppä, H. Kaartinen, H. Haggren et al., “A review: Remote sensing sensors,” Multi-purposeful application of geospatial data, pp. 19–42, 2018.
  2. C. Ji, X. Li, H. Wei, and S. Li, “Comparison of different multispectral sensors for photosynthetic and non-photosynthetic vegetation-fraction retrieval,” Remote Sensing, vol. 12, no. 1, p. 115, 2020.
  3. C. Toth and G. Jóźków, “Remote sensing platforms and sensors: A survey,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115, pp. 22–36, 2016.
  4. H. Xing, L. Zhu, D. Hou, and T. Zhang, “Integrating change magnitude maps of spectrally enhanced multi-features for land cover change detection,” International Journal of Remote Sensing, vol. 42, no. 11, pp. 4284–4308, 2021.
  5. A. Mohsenifar, A. Mohammadzadeh, A. Moghimi, and B. Salehi, “A novel unsupervised forest change detection method based on the integration of a multiresolution singular value decomposition fusion and an edge-aware markov random field algorithm,” International journal of remote sensing, vol. 42, no. 24, pp. 9376–9404, 2021.
  6. Z. Zheng, Y. Zhong, J. Wang, A. Ma, and L. Zhang, “Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters,” Remote Sensing of Environment, vol. 265, p. 112636, 2021.
  7. S. Z. Shahraki, D. Sauri, P. Serra, S. Modugno, F. Seifolddini, and A. Pourahmad, “Urban sprawl pattern and land-use change detection in yazd, iran,” Habitat International, vol. 35, no. 4, pp. 521–528, 2011.
  8. A. Saber, I. El-Sayed, M. Rabah, and M. Selim, “Evaluating change detection techniques using remote sensing data: Case study new administrative capital egypt,” The Egyptian Journal of Remote Sensing and Space Science, vol. 24, no. 3, pp. 635–648, 2021.
  9. A. P. Tewkesbury, A. J. Comber, N. J. Tate, A. Lamb, and P. F. Fisher, “A critical synthesis of remotely sensed optical image change detection techniques,” Remote Sensing of Environment, vol. 160, pp. 1–14, 2015.
  10. N. Wang, W. Li, R. Tao, and Q. Du, “Graph-based block-level urban change detection using sentinel-2 time series,” Remote Sensing of Environment, vol. 274, p. 112993, 2022.
  11. Y. Bazi, L. Bruzzone, and F. Melgani, “An unsupervised approach based on the generalized gaussian model to automatic change detection in multitemporal sar images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 4, pp. 874–887, 2005.
  12. A. Wu, T. Che, X. Li, and X. Zhu, “Routeview: an intelligent route planning system for ships sailing through arctic ice zones based on big earth data,” International Journal of Digital Earth, vol. 15, no. 1, pp. 1588–1613, 2022.
  13. Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection,” IEEE transactions on geoscience and remote sensing, vol. 60, pp. 1–16, 2021.
  14. J. Wang, S. Wang, F. Wang, Y. Zhou, Z. Wang, J. Ji, Y. Xiong, and Q. Zhao, “Fwenet: a deep convolutional neural network for flood water body extraction based on sar images,” International Journal of Digital Earth, vol. 15, no. 1, pp. 345–361, 2022.
  15. C. Zhang, P. Yue, D. Tapete, L. Jiang, B. Shangguan, L. Huang, and G. Liu, “A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, pp. 183–200, 2020.
  16. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  17. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19.
  18. W. G. C. Bandara and V. M. Patel, “A transformer-based siamese network for change detection,” arXiv preprint arXiv:2201.01293, 2022.
  19. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  20. H. Chen and Z. Shi, “A spatial-temporal attention-based method and a new dataset for remote sensing image change detection,” Remote Sensing, vol. 12, no. 10, p. 1662, 2020.
  21. S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 1, pp. 574–586, 2018.
  22. D. Peng, L. Bruzzone, Y. Zhang, H. Guan, H. Ding, and X. Huang, “Semicdnet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5891–5906, 2020.
  23. C. Xu, R. Wang, S. Lin, X. Luo, B. Zhao, L. Shao, and M. Hu, “Lecture2note: Automatic generation of lecture notes from slide-based educational videos,” in 2019 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2019, pp. 898–903.
  24. C. Xu, W. Jia, T. Cui, R. Wang, Y.-f. Zhang, and X. He, “Arbitrary-shape scene text detection via visual-relational rectification and contour approximation,” IEEE Trans. Multimedia, 2022.
  25. R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese networks for change detection,” in 2018 25th IEEE International Conference on Image Processing (ICIP).   IEEE, 2018, pp. 4063–4067.
  26. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention.   Springer, 2015, pp. 234–241.
  27. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture for medical image segmentation,” in Deep learning in medical image analysis and multimodal learning for clinical decision support.   Springer, 2018, pp. 3–11.
  28. S. Fang, K. Li, J. Shao, and Z. Li, “Snunet-cd: A densely connected siamese network for change detection of vhr images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.
  29. Y. Liang, C. Zhang, J. Liu, and M. Han, “Hmlnet: a hierarchical metric learning network with dual attention for change detection in high-resolution remote sensing images,” International Journal of Remote Sensing, vol. 44, no. 3, pp. 1001–1021, 2023.
  30. M. Liu, Z. Chai, H. Deng, and R. Liu, “A cnn-transformer network with multi-scale context aggregation for fine-grained cropland change detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022.
  31. H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  32. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  33. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
  34. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
  35. X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 510–519.
  36. C. Xu, W. Jia, R. Wang, X. Luo, and X. He, “Morphtext: Deep morphology regularized accurate arbitrary-shape scene text detection,” IEEE Trans. Multimedia, 2022.
  37. C. Xu, W. Jia, R. Wang, X. He, B. Zhao, and Y. Zhang, “Semantic navigation of powerpoint-based lecture video for autonote generation,” IEEE Transactions on Learning Technologies, vol. 16, no. 1, pp. 1–17, 2022.
  38. Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 5, pp. 811–815, 2020.
  39. X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7794–7803.
  40. C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,” in Artificial intelligence and statistics.   PMLR, 2015, pp. 562–570.
  41. D. Wang, X. Chen, M. Jiang, S. Du, B. Xu, and J. Wang, “Ads-net: An attention-based deeply supervised network for remote sensing image change detection,” International Journal of Applied Earth Observation and Geoinformation, vol. 101, p. 102348, 2021.
  42. J. Cao, Y. Li, M. Sun, Y. Chen, D. Lischinski, D. Cohen-Or, B. Chen, and C. Tu, “Do-conv: Depthwise over-parameterized convolutional layer,” IEEE Transactions on Image Processing, 2022.
  43. F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258.
  44. N.-T. Bui, D.-H. Hoang, Q.-T. Nguyen, M.-T. Tran, and N. Le, “Meganet: Multi-scale edge-guided attention network for weak boundary polyp segmentation,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 7985–7994.
  45. Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, and K. Barnard, “Attentional feature fusion,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 3560–3569.
  46. Y. Feng, H. Xu, J. Jiang, H. Liu, and J. Zheng, “Icif-net: Intra-scale cross-interaction and inter-scale feature fusion network for bitemporal remote sensing images change detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  47. Y. Feng, J. Jiang, H. Xu, and J. Zheng, “Change detection on remote sensing images using dual-branch multilevel intertemporal network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–15, 2023.
  48. W. Liu, Y. Lin, W. Liu, Y. Yu, and J. Li, “An attention-based multiscale transformer network for remote sensing image change detection,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 202, pp. 599–609, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhenyang Huang (5 papers)
  2. Zhaojin Fu (2 papers)
  3. Song Jintao (1 paper)
  4. Genji Yuan (2 papers)
  5. Jinjiang Li (29 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com