Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power boundedness and related properties for weighted composition operators on $\mathscr{S}(\mathbb{R}^d)$ (2405.01018v2)

Published 2 May 2024 in math.FA

Abstract: We characterize those pairs $(\psi,\varphi)$ of smooth mappings $\psi:\mathbb{R}d\rightarrow\mathbb{C},\varphi:\mathbb{R}d\rightarrow\mathbb{R}d$ for which the corresponding weighted composition operator $C_{\psi,\varphi}f=\psi\cdot(f\circ\varphi)$ acts continuously on $\mathscr{S}(\mathbb{R}d)$. Additionally, we give several easy-to-check necessary and sufficient conditions of this property for interesting special cases. Moreover, we characterize power boundedness and topologizablity of $C_{\psi,\varphi}$ on $\mathscr{S}(\mathbb{R}d)$ in terms of $\psi,\varphi$. Among other things, as an application of our results we show that for a univariate polynomial $\varphi$ with $\text{deg}(\varphi)\geq 2$, power boundedness of $C_{\psi,\varphi}$ on $\mathscr{S}(\mathbb{R})$ for every $\psi\in\mathscr{O}M(\mathbb{R})$ only depends on $\varphi$ and that in this case power boundedness of $C{\psi,\varphi}$ is equivalent to $(C_{\psi,\varphi}n)_{n\in\mathbb{N}}$ converging to $0$ in $\mathcal{L}b(\mathscr{S}(\mathbb{R}))$ as well as to the uniform mean ergodicity of $C{\psi,\varphi}$. Additionally, we give an example of a power bounded and uniformly mean ergodic weighted composition operator $C_{\psi,\varphi}$ on $\mathscr{S}(\mathbb{R})$ for which neither the multiplication operator $f\mapsto \psi f$ nor the composition operator $f\mapsto f\circ\varphi$ acts on $\mathscr{S}(\mathbb{R})$. Our results complement and considerably extend various results of Fern\'andez, Galbis, and the second named author.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (6)
  1. J. Bonet: A problem on the structure of Fréchet spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 104(2), 427–434 (2010).
  2. T. Kalmes: Power bounded weighted composition operators on function spaces defined by local properties. J. Math. Anal. Appl. 471(1-2), 211–238 (2019).
  3. T. Kalmes: Topologizable and power bounded weighted composition operators on spaces of distributions. Ann. Polon. Math. 125(2), 139–154 (2020).
  4. E.R. Lorch: Means of iterated transformations in reflexive vector spaces. Bull. Amer. Math. Soc. 45, 945–947 (1939).
  5. D. Santacreu: Ergodic properties of multiplication and weighted composition operators on spaces of holomorphic functions. to appear in Math. Nachr. 
  6. W. Żelazko: When is L⁢(X)𝐿𝑋L(X)italic_L ( italic_X ) topologizable as a topological algebra? Stud. Math. 150(3), 295–303 (2002).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com