Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NP-completeness of Tiling Finite Simply Connected Regions with a Fixed Set of Wang Tiles (2405.01017v2)

Published 2 May 2024 in math.CO, cs.CC, and math.MG

Abstract: The computational complexity of tiling finite simply connected regions with a fixed set of tiles is studied in this paper. We show that the problem of tiling simply connected regions with a fixed set of $23$ Wang tiles is NP-complete. As a consequence, the problem of tiling simply connected regions with a fixed set of $111$ rectangles is NP-complete. Our results improve that of Igor Pak and Jed Yang by using fewer numbers of tiles. Notably in the case of Wang tiles, the number has decreased by more than one third from $35$ to $23$.

Summary

We haven't generated a summary for this paper yet.