Cornering Robots to Synchronize a DFA (2405.00826v1)
Abstract: This paper considers the existence of short synchronizing words in deterministic finite automata (DFAs). In particular, we define a general strategy, which we call the \emph{cornering strategy}, for generating short synchronizing words in well-structured DFAs. We show that a DFA is synchronizable if and only if this strategy can be applied. Using the cornering strategy, we prove that all DFAs consisting of $n$ points in $\mathbb{R}d$ with bidirectional connected edge sets in which each edge $(\mb x, \mb y)$ is labeled $\mb y - \mb x$ are synchronizable. We also give sufficient conditions for such DFAs to have synchronizing words of length at most $(n-1)2$ and thereby satisfy \v{C}ern\'y's conjecture. Using similar ideas, we generalise a result of Ananichev and Volkov \cite{ananichev2004synchronizing} from monotonic automata to a wider class of DFAs admitting well-behaved partial orders. Finally, we consider how the cornering strategy can be applied to the problem of simultaneously synchronizing a DFA $G$ to an initial state $u$ and a DFA $H$ to an initial state $v$. We do not assume that DFAs $G$ and $H$ or states $u$ and $v$ are related beyond sharing the same edge labels.
- Synchronizing monotonic automata. Theoretical Computer Science, 327(3):225–239, 2004.
- Synchronizing generalized monotonic automata. Theoretical Computer Science, 330(1):3–13, 2005.
- Ján Černỳ. Poznámka k homogénnym experimentom s konečnỳmi automatmi. Matematicko-fyzikálny časopis, 14(3):208–216, 1964.
- Louis Dubuc. Sur les automates circulaires et la conjecture de černỳ. RAIRO-Theoretical Informatics and Applications, 32(1-3):21–34, 1998.
- David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500–510, 1990.
- Radius, diameter, and minimum degree. Journal of Combinatorial Theory, Series B, 47(1):73–79, 1989.
- Peter Frankl. An extremal problem for two families of sets. European Journal of Combinatorics, 3(2):125–127, 1982.
- Jarkko Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science, 295(1-3):223–232, 2003.
- AE Laemmel. A general class of discrete codes and certai of their properties. Res. rep, 1956.
- Study on application of coding theory. Polytechnic Inst. of Brooklyn, 1963.
- Chung Laung Liu. Some memory aspects of finite automata. PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering, 1962.
- Simon Mukwembi. A note on diameter and the degree sequence of a graph. Applied mathematics letters, 25(2):175–178, 2012.
- The mathematics of nonlinear programming. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1988.
- Jean-Eric Pin. On two combinatorial problems arising from automata theory. In North-Holland Mathematics Studies, volume 75, pages 535–548. Elsevier, 1983.
- Yaroslav Shitov. An improvement to a recent upper bound for synchronizing words of finite automata. arXiv preprint arXiv:1901.06542, 2019.
- Marek Szykuła. Improving the upper bound on the length of the shortest reset words. arXiv preprint arXiv:1702.05455, 2017.
- Avraham N Trahtman. Modifying the upper bound on the length of minimal synchronizing word. In Fundamentals of Computation Theory: 18th International Symposium, FCT 2011, Oslo, Norway, August 22-25, 2011. Proceedings 18, pages 173–180. Springer, 2011.
- Mikhail Vladimirovich Volkov. Synchronization of finite automata. Uspekhi Matematicheskikh Nauk, 77(5):53–130, 2022.