Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cornering Robots to Synchronize a DFA (2405.00826v1)

Published 1 May 2024 in cs.FL and math.CO

Abstract: This paper considers the existence of short synchronizing words in deterministic finite automata (DFAs). In particular, we define a general strategy, which we call the \emph{cornering strategy}, for generating short synchronizing words in well-structured DFAs. We show that a DFA is synchronizable if and only if this strategy can be applied. Using the cornering strategy, we prove that all DFAs consisting of $n$ points in $\mathbb{R}d$ with bidirectional connected edge sets in which each edge $(\mb x, \mb y)$ is labeled $\mb y - \mb x$ are synchronizable. We also give sufficient conditions for such DFAs to have synchronizing words of length at most $(n-1)2$ and thereby satisfy \v{C}ern\'y's conjecture. Using similar ideas, we generalise a result of Ananichev and Volkov \cite{ananichev2004synchronizing} from monotonic automata to a wider class of DFAs admitting well-behaved partial orders. Finally, we consider how the cornering strategy can be applied to the problem of simultaneously synchronizing a DFA $G$ to an initial state $u$ and a DFA $H$ to an initial state $v$. We do not assume that DFAs $G$ and $H$ or states $u$ and $v$ are related beyond sharing the same edge labels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Synchronizing monotonic automata. Theoretical Computer Science, 327(3):225–239, 2004.
  2. Synchronizing generalized monotonic automata. Theoretical Computer Science, 330(1):3–13, 2005.
  3. Ján Černỳ. Poznámka k homogénnym experimentom s konečnỳmi automatmi. Matematicko-fyzikálny časopis, 14(3):208–216, 1964.
  4. Louis Dubuc. Sur les automates circulaires et la conjecture de černỳ. RAIRO-Theoretical Informatics and Applications, 32(1-3):21–34, 1998.
  5. David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500–510, 1990.
  6. Radius, diameter, and minimum degree. Journal of Combinatorial Theory, Series B, 47(1):73–79, 1989.
  7. Peter Frankl. An extremal problem for two families of sets. European Journal of Combinatorics, 3(2):125–127, 1982.
  8. Jarkko Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science, 295(1-3):223–232, 2003.
  9. AE Laemmel. A general class of discrete codes and certai of their properties. Res. rep, 1956.
  10. Study on application of coding theory. Polytechnic Inst. of Brooklyn, 1963.
  11. Chung Laung Liu. Some memory aspects of finite automata. PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering, 1962.
  12. Simon Mukwembi. A note on diameter and the degree sequence of a graph. Applied mathematics letters, 25(2):175–178, 2012.
  13. The mathematics of nonlinear programming. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1988.
  14. Jean-Eric Pin. On two combinatorial problems arising from automata theory. In North-Holland Mathematics Studies, volume 75, pages 535–548. Elsevier, 1983.
  15. Yaroslav Shitov. An improvement to a recent upper bound for synchronizing words of finite automata. arXiv preprint arXiv:1901.06542, 2019.
  16. Marek Szykuła. Improving the upper bound on the length of the shortest reset words. arXiv preprint arXiv:1702.05455, 2017.
  17. Avraham N Trahtman. Modifying the upper bound on the length of minimal synchronizing word. In Fundamentals of Computation Theory: 18th International Symposium, FCT 2011, Oslo, Norway, August 22-25, 2011. Proceedings 18, pages 173–180. Springer, 2011.
  18. Mikhail Vladimirovich Volkov. Synchronization of finite automata. Uspekhi Matematicheskikh Nauk, 77(5):53–130, 2022.

Summary

We haven't generated a summary for this paper yet.