Kinetic Sunyaev Zel'dovich velocity reconstruction from Planck and unWISE (2405.00809v1)
Abstract: The kinetic Sunyaev Zel'dovich (kSZ) effect is a blackbody cosmic microwave background (CMB) temperature anisotropy induced by Thomson scattering off free electrons in bulk motion with respect to the CMB rest frame. The statistically anisotropic cross-correlation between the CMB and galaxy surveys encodes the radial bulk velocity (more generally, the remote dipole field), which can be efficiently reconstructed using a quadratic estimator. Here, we develop and implement a quadratic estimator for the remote dipole field to data from the Planck satellite and the unWISE galaxy redshift catalog. With this data combination, we forecast a $\sim 1$-$\sigma$ detection within $\Lambda$CDM assuming a simple model for the distribution of free electrons. Using reconstructions based on individual frequency temperature maps, we characterize the impact of foregrounds, concluding that they can be effectively mitigated by masking and removing the estimator monopole. We demonstrate that reconstructions based on component-separated CMB maps have no detectable biases from foregrounds or systematics at the level of the expected statistical error. We use these reconstructions to constrain the multiplicative optical depth bias to $b_v < 1.40$ at $68 \%$ confidence. Our fiducial signal model with $b_v =1$ is consistent with this measurement. Our results support an optimistic future for kSZ velocity reconstruction with near-term datasets.
- Planck Collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astronomy & Astrophysics 641, A1 (2020a).
- T. Louis et al., The atacama cosmology telescope: two-season actpol spectra and parameters, Journal of Cosmology and Astroparticle Physics 2017 (06), 031–031.
- J. E. Carlstrom et al., The 10 meter south pole telescope, Publications of the Astronomical Society of the Pacific 123, 568 (2011).
- The Simons Observatory Collaboration, The Simons Observatory: science goals and forecasts, Journal of Cosmology and Astroparticle Physics 2019 (02), 056, arXiv:1808.07445v2 .
- K. N. Abazajian et al. (CMB-S4), CMB-S4 Science Book, First Edition, (2016), arXiv:1610.02743 [astro-ph.CO] .
- R. A. Sunyaev and Y. B. Zeldovich, The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement, Monthly Notices of the Royal Astronomical Society 190, 413 (1980).
- N. Hand et al., Evidence of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel’dovich Effect, Physical Review Letters 109, 041101 (2012).
- F. D. Bernardis et al., Detection of the pairwise kinematic Sunyaev-Zel’dovich effect with BOSS DR11 and the Atacama Cosmology Telescope, Journal of Cosmology and Astroparticle Physics 2017 (03), 008.
- E. Schaan et al. (Atacama Cosmology Telescope Collaboration), Atacama cosmology telescope: Combined kinematic and thermal sunyaev-zel’dovich measurements from boss cmass and lowz halos, Phys. Rev. D 103, 063513 (2021).
- P. Zhang, The dark flow induced small scale kinetic Sunyaev Zel’dovich effect, Mon. Not. Roy. Astron. Soc. 407, L36 (2010), arXiv:1004.0990 [astro-ph.CO] .
- P. Zhang and A. Stebbins, Confirmation of the Copernican Principle at Gpc Radial Scale and above from the Kinetic Sunyaev Zel’dovich Effect Power Spectrum, Phys. Rev. Lett. 107, 041301 (2011), arXiv:1009.3967 [astro-ph.CO] .
- P. Zhang and M. C. Johnson, Testing eternal inflation with the kinetic Sunyaev Zel’dovich effect, JCAP 06, 046, arXiv:1501.00511 [astro-ph.CO] .
- J. I. Cayuso and M. C. Johnson, Towards testing CMB anomalies using the kinetic and polarized Sunyaev-Zel’dovich effects, Phys. Rev. D 101, 123508 (2020), arXiv:1904.10981 [astro-ph.CO] .
- D. Contreras, M. C. Johnson, and J. B. Mertens, Towards detection of relativistic effects in galaxy number counts using kSZ Tomography, JCAP 10, 024, arXiv:1904.10033 [astro-ph.CO] .
- U.-L. Pen and P. Zhang, Observational Consequences of Dark Energy Decay, Phys. Rev. D 89, 063009 (2014), arXiv:1202.0107 [astro-ph.CO] .
- Z. Pan and M. C. Johnson, Forecasted constraints on modified gravity from Sunyaev-Zel’dovich tomography, Physical Review D 100, 083522 (2019), arXiv:1906.04208 .
- N. A. Kumar, S. C. Hotinli, and M. Kamionkowski, Uncorrelated compensated isocurvature perturbations from kinetic Sunyaev-Zeldovich tomography, Phys. Rev. D 107, 043504 (2023), arXiv:2208.02829 [astro-ph.CO] .
- A. Terrana, M.-J. Harris, and M. C. Johnson, Analyzing the cosmic variance limit of remote dipole measurements of the cosmic microwave background using the large-scale kinetic Sunyaev Zel’dovich effect, Journal of Cosmology and Astroparticle Physics 2017 (02), 040, arXiv:1610.06919v2 .
- J. I. Cayuso, M. C. Johnson, and J. B. Mertens, Simulated reconstruction of the remote dipole field using the kinetic Sunyaev Zel’dovich effect, Physical Review D 98, 063502 (2018), arXiv:1806.01290 .
- Y. Kvasiuk and M. Münchmeyer, Autodifferentiable likelihood pipeline for the cross-correlation of CMB and large-scale structure due to the kinetic Sunyaev-Zeldovich effect, Phys. Rev. D 109, 083515 (2024), arXiv:2305.08903 [astro-ph.CO] .
- D. Contreras, F. McCarthy, and M. C. Johnson, Maximum likelihood kinetic Sunyaev-Zel’dovich velocity reconstruction, Phys. Rev. D 107, 023521 (2023), arXiv:2205.15779 [astro-ph.CO] .
- U. Giri and K. M. Smith, Exploring KSZ velocity reconstruction with N-body simulations and the halo model, JCAP 09, 028, arXiv:2010.07193 [astro-ph.CO] .
- LSST Science and LSST Project Collaborations, LSST Science Book, Version 2.0, (2009), arXiv:0912.0201 .
- A. Aghamousa et al. (DESI), The DESI Experiment Part I: Science,Targeting, and Survey Design, (2016), arXiv:1611.00036 [astro-ph.IM] .
- E. L. Wright et al., The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance, The Astronomical Journal 140, 1868 (2010), arXiv:1008.0031 [astro-ph.IM] .
- A. Mainzer et al., Initial Performance of the NEOWISE Reactivation Mission, The Astrophysical Journal 792, 30 (2014), arXiv:1406.6025 .
- D. Lang, unwise: Unblurred coadds of the wise imaging, The Astronomical Journal 147, 108 (2014).
- A. M. Meisner, D. Lang, and D. J. Schlegel, Full-depth coadds of the wise and first-year neowise-reactivation images, The Astronomical Journal 153, 38 (2017a).
- A. M. Meisner, D. Lang, and D. J. Schlegel, Deep full-sky coadds from three years of wise and neowise observations, The Astronomical Journal 154, 161 (2017b).
- E. F. Schlafly, A. M. Meisner, and G. M. Green, The unwise catalog: Two billion infrared sources from five years of wise imaging, The Astrophysical Journal Supplement Series 240, 30 (2019).
- N. Battaglia, The Tau of Galaxy Clusters, JCAP 08, 058, arXiv:1607.02442 [astro-ph.CO] .
- Y. Akrami et al. (Planck), Planck intermediate results. LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II, Astron. Astrophys. 644, A100 (2020a), arXiv:2003.12646 [astro-ph.CO] .
- Y. Akrami et al. (Planck), Planck 2018 results. IV. Diffuse component separation, Astron. Astrophys. 641, A4 (2020b), arXiv:1807.06208 [astro-ph.CO] .
- P. A. R. Ade et al. (Planck), Planck 2015 results. XII. Full Focal Plane simulations, Astron. Astrophys. 594, A12 (2016), arXiv:1509.06348 [astro-ph.CO] .
- D. Lenz, O. Doré, and G. Lagache, Large-scale Maps of the Cosmic Infrared Background from Planck, The Astrophysical Journal 883, 75 (2019), arXiv:1905.00426 .
- M. Tegmark, A. De Oliveira-Costa, and A. J. Hamilton, High resolution foreground cleaned CMB map from WMAP, Physical Review D 68, 123523 (2003).
- S. Ferraro, B. D. Sherwin, and D. N. Spergel, WISE measurement of the integrated Sachs-Wolfe effect, Phys. Rev. D 91, 083533 (2015), arXiv:1401.1193 [astro-ph.CO] .
- G. A. Marques and A. Bernui, Tomographic analyses of the CMB lensing and galaxy clustering to probe the linear structure growth, JCAP 05, 052, arXiv:1908.04854 [astro-ph.CO] .
- A. Krolewski, S. Ferraro, and M. White, Cosmological constraints from unwise and planck cmb lensing tomography, Journal of Cosmology and Astroparticle Physics 2021 (12), 028.
- A. Krolewski and S. Ferraro, The Integrated Sachs Wolfe effect: unWISE and Planck constraints on dynamical dark energy, JCAP 04 (04), 033, arXiv:2110.13959 [astro-ph.CO] .
- G. S. Farren et al. (ACT), The Atacama Cosmology Telescope: Cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing, (2023b), arXiv:2309.05659 [astro-ph.CO] .
- Gaia Collaboration, Gaia Data Release 2, Astronomy & Astrophysics 616, A1 (2018), arXiv:1804.09365 .
- Planck Collaboration, Planck 2018 results. IV. Diffuse component separation, Astronomy & Astrophysics 641, A4 (2020b).
- C. Laigle et al., The COSMOS2015 Catalog: Exploring the 1<<< z<<< 6 Universe with half a million galaxies, Astrophys. J. Suppl. 224, 24 (2016), arXiv:1604.02350 [astro-ph.GA] .
- P. R. Upton Sanderbeck, A. D’Aloisio, and M. J. McQuinn, Models of the thermal evolution of the intergalactic medium after reionization, Monthly Notices of the Royal Astronomical Society 460, 1885 (2016).
- S. C. Hotinli, Cosmological probes of helium reionization, Phys. Rev. D 108, 043528 (2023), arXiv:2212.08004 [astro-ph.CO] .
- A. L. Erickcek, S. M. Carroll, and M. Kamionkowski, Superhorizon Perturbations and the Cosmic Microwave Background, Phys. Rev. D 78, 083012 (2008), arXiv:0808.1570 [astro-ph] .
- E. Alizadeh and C. M. Hirata, How to detect gravitational waves through the cross correlation of the galaxy distribution with the cmb polarization, Physical Review D 85 (2012).
- C. L. Reichardt et al., A Measurement of Secondary Cosmic Microwave Background Anisotropies with Two Years of South Pole Telescope Observations, Astrophys. J. 755, 70 (2012), arXiv:1111.0932 [astro-ph.CO] .
- M. Fukugita and P. J. E. Peebles, The Cosmic Energy Inventory, Astrophys. J. 616, 643 (2004), arXiv:astro-ph/0406095 [astro-ph] .
- J. M. Shull, B. D. Smith, and C. W. Danforth, The Baryon Census in a Multiphase Intergalactic Medium: 30% of the Baryons May Still be Missing, Astrophys. J. 759, 23 (2012), arXiv:1112.2706 [astro-ph.CO] .