Schwinger-Keldysh nonperturbative field theory of open quantum systems beyond the Markovian regime: Application to spin-boson and spin-chain-boson models (2405.00765v4)
Abstract: Open quantum systems with many interacting degrees of freedom pose a formidable challenge for presently available theoretical methods, especially when dissipative environment imposes non-Markovian dynamics on them with memory effects and revival of genuine quantum properties. Even the archetypical spin-boson model, where a single spin-1/2 interacts with an infinite bosonic bath, requires switching between methods for different choice of system and bath parameters. Here, we construct a field-theoretic framework as a single methodology that can handle many mutually interacting quantum spins of arbitrary value S, spatial dimensionality, system-bath coupling, bath temperature and spectral properties of the bath. Our framework combines Schwinger-Keldysh field theory (SKFT) with two-particle irreducible (2PI) action resumming a class of Feynman diagrams to an infinite order originating from 1/N expansion, where N is the number of Schwinger bosons to which the spin is mapped. Remarkably, the SKFT+2PI approach closely tracks numerically exact benchmarks for spin-boson in the non-Markovian regime obtained from hierarchical equations of motion or tensor network methods. Furthermore, we demonstrate the ability of our SKFT+2PI framework to compute two-spin correlators of an antiferromagnetic quantum spin chain whose edge spins are coupled to a set of three bosonic baths (one for each spin component) at different temperatures. The favorable numerical cost of solving integro-differential equations produced by SKFT+2PI framework with increasing number of spins, time steps or spatial dimensionality makes it a promising route for simulation of driven-dissipative systems in quantum computing or quantum magnonics and quantum spintronics in the presence of a single or multiple dissipative environments.
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
- I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
- G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976).
- I. de Vega and M.-C. Bañuls, Thermofield-based chain-mapping approach for open quantum systems, Phys. Rev. A 92, 052116 (2015).
- F. Nathan and M. S. Rudner, Universal Lindblad equation for open quantum systems, Phys. Rev. B 102, 115109 (2020).
- T. Prosen, Third quantization: a general method to solve master equations for quadratic open Fermi systems, New Journal of Physics 10, 043026 (2008).
- L. E. Ballentine, Quantum Mechanics: A Modern Development (World Scientific, Singapore, 2014).
- L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh field theory for driven open quantum systems, Rep. Prog. Phys. 79, 096001 (2016).
- A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2023).
- J. Berges, Nonequilibrium quantum fields: From cold atoms to cosmology, arXiv:1503.02907 (2015).
- E. A. Calzetta and B.-L. B. Hu, Nonequilibrium Quantum Field Theory (Cambridge University Press, Cambridge, 2008).
- F. Gelis, Quantum Field Theory: From Basics to Modern Topics (Cambridge University Press, Cambridge, 2019).
- F. Thompson and A. Kamenev, Field theory of many-body Lindbladian dynamics, Ann. Phys. 455, 169385 (2023).
- M. F. Maghrebi and A. V. Gorshkov, Nonequilibrium many-body steady states via Keldysh formalism, Phys. Rev. B 93, 014307 (2016).
- B. Gulácsi and G. Burkard, Signatures of non-Markovianity of a superconducting qubit, Phys. Rev. B 107, 174511 (2023).
- M. Babadi, E. Demler, and M. Knap, Far-from-equilibrium field theory of many-body quantum spin systems: Prethermalization and relaxation of spin spiral states in three dimensions, Phys. Rev. X 5, 041005 (2015).
- A. Schuckert, A. Orioli, and J. Berges, Nonequilibrium quantum spin dynamics from two-particle irreducible functional integral techniques in the Schwinger boson representation, Phys. Rev. B 98, 224304 (2018).
- M. Brown and I. Whittingham, Two-particle irreducible effective actions versus resummation: Analytic properties and self-consistency, Nucl. Phys. B 900, 477 (2015).
- H. Mera, T. G. Pedersen, and B. K. Nikolić, Hypergeometric resummation of self-consistent sunset diagrams for steady-state electron-boson quantum many-body systems out of equilibrium, Phys. Rev. B 94, 165429 (2016).
- H. Mera, T. G. Pedersen, and B. K. Nikolić, Fast summation of divergent series and resurgent transseries from Meijer-g𝑔gitalic_g approximants, Phys. Rev. D 97, 105027 (2018).
- J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10, 2428 (1974).
- N. Makri, Numerical path integral techniques for long time dynamics of quantum dissipative systems, J. Math. Phys. 36, 2430 (1995).
- H. Wang and M. Thoss, From coherent motion to localization: dynamics of the spin-boson model at zero temperature, New J. Phys. 10, 115005 (2008).
- H. Wang and M. Thoss, From coherent motion to localization: II. dynamics of the spin-boson model with sub-Ohmic spectral density at zero temperature, Chem. Phys. 370, 78 (2010).
- A. Strathearn, B. W. Lovett, and P. Kirton, Efficient real-time path integrals for non-Markovian spin-boson models, New J. Phys. 19, 093009 (2017).
- E. Ye and G. K.-L. Chan, Constructing tensor network influence functionals for general quantum dynamics, J. Chem. Phys. 155, 044104 (2021).
- M. Xu and J. Ankerhold, About the performance of perturbative treatments of the spin-boson dynamics within the hierarchical equations of motion approach, Eur. Phys. J. Spec. Top. 232, 3209–3217 (2023).
- M. Weber, Quantum Monte Carlo simulation of spin-boson models using wormhole updates, Phys. Rev. B 105, 165129 (2022).
- I. Vilkoviskiy and D. A. Abanin, A bound on approximating non-Markovian dynamics by tensor networks in the time domain, arXiv:2307.15592 (2023).
- Y. Tanimura, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM), J. Chem. Phys. 153, 020901 (2020).
- G. Clos and H.-P. Breuer, Quantification of memory effects in the spin-boson model, Phys. Rev. A 86, 012115 (2012).
- S. Wenderoth, H.-P. Breuer, and M. Thoss, Non-Markovian effects in the spin-boson model at zero temperature, Phys. Rev. A 104, 012213 (2021).
- R. Bulla, N.-H. Tong, and M. Vojta, Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model, Phys. Rev. Lett. 91, 170601 (2003).
- F. B. Anders and A. Schiller, Spin precession and real-time dynamics in the Kondo model: Time-dependent numerical renormalization-group study, Phys. Rev. B 74, 245113 (2006).
- F. B. Anders, R. Bulla, and M. Vojta, Equilibrium and nonequilibrium dynamics of the sub-Ohmic spin-boson model, Phys. Rev. Lett. 98, 210402 (2007).
- M. Vojta, Numerical renormalization group for the sub-Ohmic spin-boson model: A conspiracy of errors, Phys. Rev. B 85, 115113 (2012).
- P. P. Orth, A. Imambekov, and K. Le Hur, Nonperturbative stochastic method for driven spin-boson model, Phys. Rev. B 87, 014305 (2013).
- F. Shibata and T. Arimitsu, Expansion formulas in nonequilibrium statistical mechanics, J. Phys. Soc. Japan 49, 891 (1980).
- Y. Tanimura and P. G. Wolynes, Quantum and classical Fokker-Planck equations for a Gaussian-Markovian noise bath, Phys. Rev. A 43, 4131 (1991).
- A. Lerose, M. Sonner, and D. A. Abanin, Overcoming the entanglement barrier in quantum many-body dynamics via space-time duality, Phys. Rev. B 107, L060305 (2023).
- M. M. Rams and M. Zwolak, Breaking the entanglement barrier: Tensor network simulation of quantum transport, Phys. Rev. Lett. 124, 137701 (2020).
- F. García-Gaitán and B. K. Nikolić, Fate of entanglement in magnetism under Lindbladian or non-Markovian dynamics and conditions for their transition to Landau-Lifshitz-Gilbert classical dynamics, arXiv:2303.17596 (2023).
- R. Trivedi and J. I. Cirac, Transitions in computational complexity of continuous-time local open quantum dynamics, Phys. Rev. Lett. 129, 260405 (2022).
- U. Bajpai, A. Suresh, and B. K. Nikolić, Quantum many-body states and Green's functions of nonequilibrium electron-magnon systems: Localized spin operators versus their mapping to Holstein-Primakoff bosons, Phys. Rev. B 104, 184425 (2021).
- A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994).
- A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2023).
- J. Anders, C. R. J. Sait, and S. A. R. Horsley, Quantum Brownian motion for magnets, New J. Phys. 24, 033020 (2022).
- U. Bajpai and B. Nikolić, Time-retarded damping and magnetic inertia in the Landau-Lifshitz-Gilbert equation self-consistently coupled to electronic time-dependent nonequilibrium Green functions, Phys. Rev. B 99, 134409 (2019).
- S. Nakajima, On quantum theory of transport phenomena: Steady diffusion, Prog. Theor. Phys. 20, 948 (1958).
- R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33, 1338 (1960).
- J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University Press, Cambridge, 2007).
- J. Berges, Controlled nonperturbative dynamics of quantum fields out of equilibrium, Nucl. Phys. A 699, 847 (2002).
- G. Aarts and J. Berges, Classical aspects of quantum fields far from equilibrium, Phys. Rev. Lett. 88, 041603 (2002).
- M. Kronenwett and T. Gasenzer, Far-from-equilibrium dynamics of an ultracold Fermi gas, Appl. Phys. B 102, 469 (2011).
- S. Borsányi, Nonequilibrium field theory from the 2PI effective action, arXiv: 0512308 (2005).
- G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, 2013).
- L. Kantorovich, Generalized Langreth rules, Phys. Rev. B 101, 165408 (2020).
- G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett. 91, 147902 (2003).
- Y. Takahashi and H. Umezawa, Thermo field dynamics, Int. J. Mod. Phys. B 10, 1755 (1996).
- W. Gautschi, Orthogonal polynomials (in Matlab), J. Comput. Appl. Math. 178, 215 (2005).
- M. P. Woods and M. B. Plenio, Dynamical error bounds for continuum discretisation via Gauss quadrature rules–A Lieb-Robinson bound approach, J. Math. Phys. 57, 022105 (2016).
- C. Lubich, I. V. Oseledets, and B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal. 53, 917 (2015).
- C. Meier and D. Tannor, Non-Markovian evolution of the density operator in the presence of strong laser fields, J. Chem. Phys. 111, 3365 (1999).
- J. Johansson, P. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012).
- J. Johansson, P. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
- A. Branschädel and T. Gasenzer, 2PI nonequilibrium versus transport equations for an ultracold Bose gas, J. Phys. B: At. Mol. Opt. Phys. 41, 135302 (2008).
- J. Lang, M. Buchhold, and S. Diehl, Field theory for the dynamics of the open O(N)𝑂𝑁O(N)italic_O ( italic_N ) model, Phys. Rev. B 109, 064310 (2024).
- M. E. Carrington, B. A. Meggison, and D. Pickering, 2PI effective action at four loop order in φ4superscript𝜑4{\varphi}^{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory, Phys. Rev. D 94, 025018 (2016).
- J. Berges, n𝑛nitalic_n-particle irreducible effective action techniques for gauge theories, Phys. Rev. D 70, 105010 (2004).