Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diagnosis of Parkinson's Disease Using EEG Signals and Machine Learning Techniques: A Comprehensive Study (2405.00741v1)

Published 30 Apr 2024 in eess.SP and cs.AI

Abstract: Parkinson's disease is a widespread neurodegenerative condition necessitating early diagnosis for effective intervention. This paper introduces an innovative method for diagnosing Parkinson's disease through the analysis of human EEG signals, employing a Support Vector Machine (SVM) classification model. this research presents novel contributions to enhance diagnostic accuracy and reliability. Our approach incorporates a comprehensive review of EEG signal analysis techniques and machine learning methods. Drawing from recent studies, we have engineered an advanced SVM-based model optimized for Parkinson's disease diagnosis. Utilizing cutting-edge feature engineering, extensive hyperparameter tuning, and kernel selection, our method achieves not only heightened diagnostic accuracy but also emphasizes model interpretability, catering to both clinicians and researchers. Moreover, ethical concerns in healthcare machine learning, such as data privacy and biases, are conscientiously addressed. We assess our method's performance through experiments on a diverse dataset comprising EEG recordings from Parkinson's disease patients and healthy controls, demonstrating significantly improved diagnostic accuracy compared to conventional techniques. In conclusion, this paper introduces an innovative SVM-based approach for diagnosing Parkinson's disease from human EEG signals. Building upon the IEEE framework and previous research, its novelty lies in the capacity to enhance diagnostic accuracy while upholding interpretability and ethical considerations for practical healthcare applications. These advances promise to revolutionize early Parkinson's disease detection and management, ultimately contributing to enhanced patient outcomes and quality of life.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets