Tomography of flavoured leptogenesis with primordial blue gravitational waves (2405.00641v2)
Abstract: We explore a scenario where an early epoch of matter domination is driven by the mass scale $M_N$ of the right-handed neutrinos, which also characterizes the different flavour regimes of leptogenesis. Such a matter-domination epoch gives rise to peculiar spectral imprints on primordial Gravitational Waves (GWs) produced during inflation. We point out that the characteristic spectral features are detectable in multiple frequency bands with current and future GW experiments in case of Blue GWs (BGWs) described by a power-law with a positive spectral index $(n_T >0)$ and an amplitude compatible with Cosmic Microwave Background (CMB) measurements at the CMB scale. We find that the three-flavour leptogenesis regime with $M_N \lesssim 109~{\rm GeV}$ imprints BGWs more prominently than the two-flavour and one-flavour regimes characterized by a higher right-handed neutrino mass scale. In particular, a two-flavour (three-flavour) leptogenesis regime is expected to leave distinct imprints in the mHz-Hz ($\mu$Hz-mHz) band. Moreover, we translate the current Big Bang Nucleosynthesis (BBN) and LIGO limits on the GW energy density into constraints on the flavour leptogenesis parameter space for different GW spectral indices $n_T$. We provide a rigorous statistical analysis of how the future GW detectors would be conjointly able to distinguish the flavour regimes. Interestingly, the scenario also offers unique GW signals testable in the next LIGO run with a correlated signature in the PTA frequency band with an amplitude comparable to the one expected from supermassive black holes.
- A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23, 347 (1981).
- S. Datta and R. Samanta, Gravitational waves-tomography of Low-Scale-Leptogenesis, JHEP 11, 159, arXiv:2208.09949 [hep-ph] .
- S. Datta and R. Samanta, Fingerprints of GeV scale right-handed neutrinos on inflationary gravitational waves and PTA data, Phys. Rev. D 108, L091706 (2023), arXiv:2307.00646 [hep-ph] .
- M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174, 45 (1986).
- G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
- J. Antoniadis et al. (EPTA, InPTA:), The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678, A50 (2023), arXiv:2306.16214 [astro-ph.HE] .
- D. J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
- H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
- A. Afzal et al. (NANOGrav), The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
- S. Vagnozzi, Implications of the NANOGrav results for inflation, Mon. Not. Roy. Astron. Soc. 502, L11 (2021), arXiv:2009.13432 [astro-ph.CO] .
- S. Bhattacharya, S. Mohanty, and P. Parashari, Implications of the NANOGrav result on primordial gravitational waves in nonstandard cosmologies, Phys. Rev. D 103, 063532 (2021), arXiv:2010.05071 [astro-ph.CO] .
- S. Kuroyanagi, T. Takahashi, and S. Yokoyama, Blue-tilted inflationary tensor spectrum and reheating in the light of NANOGrav results, JCAP 01, 071, arXiv:2011.03323 [astro-ph.CO] .
- M. Benetti, L. L. Graef, and S. Vagnozzi, Primordial gravitational waves from NANOGrav: A broken power-law approach, Phys. Rev. D 105, 043520 (2022), arXiv:2111.04758 [astro-ph.CO] .
- S. Vagnozzi, Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments, JHEAp 39, 81 (2023), arXiv:2306.16912 [astro-ph.CO] .
- D. Borah, S. Jyoti Das, and R. Samanta, Imprint of inflationary gravitational waves and WIMP dark matter in pulsar timing array data, JCAP 03, 031, arXiv:2307.00537 [hep-ph] .
- W. DeRocco and J. A. Dror, Using Pulsar Parameter Drifts to Detect Subnanohertz Gravitational Waves, Phys. Rev. Lett. 132, 101403 (2024), arXiv:2212.09751 [astro-ph.HE] .
- W. DeRocco and J. A. Dror, Searching for stochastic gravitational waves below a nanohertz, Phys. Rev. D 108, 103011 (2023), arXiv:2304.13042 [astro-ph.HE] .
- D. Blas and A. C. Jenkins, Bridging the μ𝜇\muitalic_μHz Gap in the Gravitational-Wave Landscape with Binary Resonances, Phys. Rev. Lett. 128, 101103 (2022a), arXiv:2107.04601 [astro-ph.CO] .
- D. Blas and A. C. Jenkins, Detecting stochastic gravitational waves with binary resonance, Phys. Rev. D 105, 064021 (2022b), arXiv:2107.04063 [gr-qc] .
- A. Gruzinov, Elastic inflation, Phys. Rev. D 70, 063518 (2004), arXiv:astro-ph/0404548 .
- T. Kobayashi, M. Yamaguchi, and J. Yokoyama, G-inflation: Inflation driven by the Galileon field, Phys. Rev. Lett. 105, 231302 (2010), arXiv:1008.0603 [hep-th] .
- S. Endlich, A. Nicolis, and J. Wang, Solid Inflation, JCAP 10, 011, arXiv:1210.0569 [hep-th] .
- D. Cannone, G. Tasinato, and D. Wands, Generalised tensor fluctuations and inflation, JCAP 01, 029, arXiv:1409.6568 [astro-ph.CO] .
- A. Ricciardone and G. Tasinato, Primordial gravitational waves in supersolid inflation, Phys. Rev. D 96, 023508 (2017), arXiv:1611.04516 [astro-ph.CO] .
- Y. Mishima and T. Kobayashi, Revisiting slow-roll dynamics and the tensor tilt in general single-field inflation, Phys. Rev. D 101, 043536 (2020), arXiv:1911.02143 [gr-qc] .
- S. Pan, Y. Cai, and Y.-S. Piao, Climbing over the potential barrier during inflation via null energy condition violation, (2024), arXiv:2404.12655 [astro-ph.CO] .
- S. Datta, Explaining PTA Data with Inflationary GWs in a PBH-Dominated Universe, (2023), arXiv:2309.14238 [hep-ph] .
- V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155, 36 (1985).
- L. Alvarez-Gaume and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234, 269 (1984).
- S. H.-S. Alexander, M. E. Peskin, and M. M. Sheikh-Jabbari, Leptogenesis from gravity waves in models of inflation, Phys. Rev. Lett. 96, 081301 (2006), arXiv:hep-th/0403069 .
- A. G. Cohen and D. B. Kaplan, Thermodynamic Generation of the Baryon Asymmetry, Phys. Lett. B 199, 251 (1987).
- A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999), arXiv:hep-ph/9901362 .
- A. Pilaftsis and T. E. J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692, 303 (2004), arXiv:hep-ph/0309342 .
- W. Buchmuller, P. Di Bari, and M. Plumacher, Leptogenesis for pedestrians, Annals Phys. 315, 305 (2005), arXiv:hep-ph/0401240 .
- S. Davidson, E. Nardi, and Y. Nir, Leptogenesis, Phys. Rept. 466, 105 (2008), arXiv:0802.2962 [hep-ph] .
- D. Bodeker and W. Buchmuller, Baryogenesis from the weak scale to the grand unification scale, Rev. Mod. Phys. 93, 035004 (2021), arXiv:2009.07294 [hep-ph] .
- P. Di Bari, On the origin of matter in the Universe, Prog. Part. Nucl. Phys. 122, 103913 (2022), arXiv:2107.13750 [hep-ph] .
- S. Davidson and A. Ibarra, A Lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535, 25 (2002), arXiv:hep-ph/0202239 .
- E. K. Akhmedov, V. A. Rubakov, and A. Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81, 1359 (1998), arXiv:hep-ph/9803255 .
- T. Hambye and D. Teresi, Higgs doublet decay as the origin of the baryon asymmetry, Phys. Rev. Lett. 117, 091801 (2016), arXiv:1606.00017 [hep-ph] .
- S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03, 018, arXiv:hep-ph/0607330 .
- S. Pascoli, S. T. Petcov, and A. Riotto, Leptogenesis and Low Energy CP Violation in Neutrino Physics, Nucl. Phys. B 774, 1 (2007), arXiv:hep-ph/0611338 .
- G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82, 2701 (2010), arXiv:1002.0211 [hep-ph] .
- S. F. King, Unified Models of Neutrinos, Flavour and CP Violation, Prog. Part. Nucl. Phys. 94, 217 (2017), arXiv:1701.04413 [hep-ph] .
- A. Davidson, B−L𝐵𝐿B-Litalic_B - italic_L as the fourth color within an SU(2)L×U(1)R×U(1)SUsubscript2𝐿Usubscript1𝑅U1\mathrm{SU}(2)_{L}\times\mathrm{U}(1)_{R}\times\mathrm{U}(1)roman_SU ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT × roman_U ( 1 ) start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT × roman_U ( 1 ) model, Phys. Rev. D 20, 776 (1979).
- R. E. Marshak and R. N. Mohapatra, Quark - Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group, Phys. Lett. B 91, 222 (1980).
- P. Minkowski, μ→eγ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays?, Phys. Lett. B 67, 421 (1977).
- M. Gell-Mann, P. Ramond, and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927, 315 (1979), arXiv:1306.4669 [hep-th] .
- T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64, 1103 (1980).
- R. N. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56, 561 (1986).
- A. D. Linde, Phase Transitions in Gauge Theories and Cosmology, Rept. Prog. Phys. 42, 389 (1979).
- T. W. B. Kibble, Some Implications of a Cosmological Phase Transition, Phys. Rept. 67, 183 (1980).
- M. Quiros, Finite temperature field theory and phase transitions, in ICTP Summer School in High-Energy Physics and Cosmology (1999) pp. 187–259, arXiv:hep-ph/9901312 .
- C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04, 001, arXiv:1512.06239 [astro-ph.CO] .
- A. Megevand and S. Ramirez, Bubble nucleation and growth in very strong cosmological phase transitions, Nucl. Phys. B 919, 74 (2017), arXiv:1611.05853 [astro-ph.CO] .
- C. Gross, O. Lebedev, and M. Zatta, Higgs–inflaton coupling from reheating and the metastable Universe, Phys. Lett. B 753, 178 (2016), arXiv:1506.05106 [hep-ph] .
- S. Blasi, V. Brdar, and K. Schmitz, Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum, Phys. Rev. Res. 2, 043321 (2020), arXiv:2004.02889 [hep-ph] .
- S. Weinberg, Damping of tensor modes in cosmology, Phys. Rev. D 69, 023503 (2004), arXiv:astro-ph/0306304 .
- W. Zhao, Y. Zhang, and T. Xia, New method to constrain the relativistic free-streaming gas in the Universe, Phys. Lett. B 677, 235 (2009), arXiv:0905.3223 [astro-ph.CO] .
- L. Page et al. (WMAP), Three year Wilkinson Microwave Anisotropy Probe (WMAP) observations: polarization analysis, Astrophys. J. Suppl. 170, 335 (2007), arXiv:astro-ph/0603450 .
- S. Kuroyanagi and T. Takahashi, Higher Order Corrections to the Primordial Gravitational Wave Spectrum and its Impact on Parameter Estimates for Inflation, JCAP 10, 006, arXiv:1106.3437 [astro-ph.CO] .
- A. R. Liddle and D. H. Lyth, The Cold dark matter density perturbation, Phys. Rept. 231, 1 (1993), arXiv:astro-ph/9303019 .
- N. Seto and J. Yokoyama, Probing the equation of state of the early universe with a space laser interferometer, J. Phys. Soc. Jap. 72, 3082 (2003), arXiv:gr-qc/0305096 .
- L. A. Boyle and P. J. Steinhardt, Probing the early universe with inflationary gravitational waves, Phys. Rev. D 77, 063504 (2008), arXiv:astro-ph/0512014 .
- S. Kuroyanagi, T. Chiba, and N. Sugiyama, Precision calculations of the gravitational wave background spectrum from inflation, Phys. Rev. D 79, 103501 (2009), arXiv:0804.3249 [astro-ph] .
- K. Nakayama and J. Yokoyama, Gravitational Wave Background and Non-Gaussianity as a Probe of the Curvaton Scenario, JCAP 01, 010, arXiv:0910.0715 [astro-ph.CO] .
- S. Kuroyanagi, T. Takahashi, and S. Yokoyama, Blue-tilted Tensor Spectrum and Thermal History of the Universe, JCAP 02, 003, arXiv:1407.4785 [astro-ph.CO] .
- Y. Watanabe and E. Komatsu, Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model, Phys. Rev. D 73, 123515 (2006), arXiv:astro-ph/0604176 .
- K. Saikawa and S. Shirai, Primordial gravitational waves, precisely: The role of thermodynamics in the Standard Model, JCAP 05, 035, arXiv:1803.01038 [hep-ph] .
- A. Peimbert, M. Peimbert, and V. Luridiana, The primordial helium abundance and the number of neutrino families, Rev. Mex. Astron. Astrofis. 52, 419 (2016), arXiv:1608.02062 [astro-ph.CO] .
- A. Weltman et al., Fundamental physics with the Square Kilometre Array, Publ. Astron. Soc. Austral. 37, e002 (2020), arXiv:1810.02680 [astro-ph.CO] .
- J. Garcia-Bellido, H. Murayama, and G. White, Exploring the early Universe with Gaia and Theia, JCAP 12 (12), 023, arXiv:2104.04778 [hep-ph] .
- A. Sesana et al., Unveiling the gravitational universe at μ𝜇\muitalic_μ-Hz frequencies, Exper. Astron. 51, 1333 (2021), arXiv:1908.11391 [astro-ph.IM] .
- P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna, (2017), arXiv:1702.00786 [astro-ph.IM] .
- K. Yagi and N. Seto, Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries, Phys. Rev. D 83, 044011 (2011), [Erratum: Phys.Rev.D 95, 109901 (2017)], arXiv:1101.3940 [astro-ph.CO] .
- S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23, S125 (2006).
- B. Sathyaprakash et al., Scientific Objectives of Einstein Telescope, Class. Quant. Grav. 29, 124013 (2012), [Erratum: Class.Quant.Grav. 30, 079501 (2013)], arXiv:1206.0331 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific), Exploring the Sensitivity of Next Generation Gravitational Wave Detectors, Class. Quant. Grav. 34, 044001 (2017b), arXiv:1607.08697 [astro-ph.IM] .
- G. Agazie et al. (International Pulsar Timing Array), Comparing recent PTA results on the nanohertz stochastic gravitational wave background, (2023b), arXiv:2309.00693 [astro-ph.HE] .
- E. S. Phinney, A Practical theorem on gravitational wave backgrounds, (2001), arXiv:astro-ph/0108028 .
- Y. Cai and Y.-S. Piao, Intermittent null energy condition violations during inflation and primordial gravitational waves, Phys. Rev. D 103, 083521 (2021), arXiv:2012.11304 [gr-qc] .
- R. Samanta and S. Datta, Gravitational wave complementarity and impact of NANOGrav data on gravitational leptogenesis, JHEP 05, 211, arXiv:2009.13452 [hep-ph] .
- S. Datta, A. Ghosal, and R. Samanta, Baryogenesis from ultralight primordial black holes and strong gravitational waves from cosmic strings, JCAP 08, 021, arXiv:2012.14981 [hep-ph] .
- Y. F. Perez-Gonzalez and J. Turner, Assessing the tension between a black hole dominated early universe and leptogenesis, Phys. Rev. D 104, 103021 (2021), arXiv:2010.03565 [hep-ph] .
- A. Ghoshal, R. Samanta, and G. White, Bremsstrahlung high-frequency gravitational wave signatures of high-scale nonthermal leptogenesis, Phys. Rev. D 108, 035019 (2023), arXiv:2211.10433 [hep-ph] .
- P. Huang and K.-P. Xie, Leptogenesis triggered by a first-order phase transition, JHEP 09, 052, arXiv:2206.04691 [hep-ph] .
- D. Borah, A. Dasgupta, and I. Saha, Leptogenesis and dark matter through relativistic bubble walls with observable gravitational waves, JHEP 11, 136, arXiv:2207.14226 [hep-ph] .
- P. A. R. Ade et al. (Planck), Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
- T. W. B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9, 1387 (1976).
- A. Vilenkin, Gravitational radiation from cosmic strings, Phys. Lett. B 107, 47 (1981).
- J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Large parallel cosmic string simulations: New results on loop production, Phys. Rev. D 83, 083514 (2011), arXiv:1101.5173 [astro-ph.CO] .