Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Metric Learning-Based Out-of-Distribution Detection with Synthetic Outlier Exposure (2405.00631v1)

Published 1 May 2024 in cs.CV

Abstract: In this paper, we present a novel approach that combines deep metric learning and synthetic data generation using diffusion models for out-of-distribution (OOD) detection. One popular approach for OOD detection is outlier exposure, where models are trained using a mixture of in-distribution (ID) samples and ``seen" OOD samples. For the OOD samples, the model is trained to minimize the KL divergence between the output probability and the uniform distribution while correctly classifying the in-distribution (ID) data. In this paper, we propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs). Additionally, we explore recent advancements in metric learning to train our models. In the experiments, we found that metric learning-based loss functions perform better than the softmax. Furthermore, the baseline models (including softmax, and metric learning) show a significant improvement when trained with the generated OOD data. Our approach outperforms strong baselines in conventional OOD detection metrics.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com