Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some remarks on periodic gradings (2405.00599v1)

Published 1 May 2024 in math.RT and math.AG

Abstract: Let $\mathfrak q$ be a finite-dimensional Lie algebra, $\vartheta\in Aut(\mathfrak q)$ a finite order automorphism, and $\mathfrak q_0$ the subalgebra of fixed points of $\vartheta$. Using $\vartheta$ one can construct a pencil $\mathcal P$ of compatible Poisson brackets on $S(\mathfrak q)$, and thereby a `large' Poisson-commutative subalgebra $Z(\mathfrak q,\vartheta)$ consisting of $\mathfrak q_0$-invariants in $S(\mathfrak q)$. We study one particular bracket ${\,\,,\,}{\infty}\in\mathcal P$ and the related Poisson centre ${\mathcal Z}\infty$. It is shown that ${\mathcal Z}_\infty$ is a polynomial ring, if $\mathfrak q$ is reductive.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com