2000 character limit reached
Some remarks on periodic gradings (2405.00599v1)
Published 1 May 2024 in math.RT and math.AG
Abstract: Let $\mathfrak q$ be a finite-dimensional Lie algebra, $\vartheta\in Aut(\mathfrak q)$ a finite order automorphism, and $\mathfrak q_0$ the subalgebra of fixed points of $\vartheta$. Using $\vartheta$ one can construct a pencil $\mathcal P$ of compatible Poisson brackets on $S(\mathfrak q)$, and thereby a `large' Poisson-commutative subalgebra $Z(\mathfrak q,\vartheta)$ consisting of $\mathfrak q_0$-invariants in $S(\mathfrak q)$. We study one particular bracket ${\,\,,\,}{\infty}\in\mathcal P$ and the related Poisson centre ${\mathcal Z}\infty$. It is shown that ${\mathcal Z}_\infty$ is a polynomial ring, if $\mathfrak q$ is reductive.
- V.V. Gorbatsevich, A.L. Onishchik and E.B. Vinberg. “Lie Groups and Lie Algebras III” (Encyclopaedia Math. Sci., vol. 41) Berlin: Springer 1994.
- V.G. Kac. “Infinite-dimensional Lie algebras”. Birkhäuser, 1983.
- T.A. Springer. Aktionen reduktiver Gruppen auf Varietäten, in: “Algebraische Transformationsgruppen und Invariantentheorie”, DMV-Seminar, Bd. 13, Basel–Boston–Berlin: Birkhäuser 1989, pp. 3–39.