Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Swarm Learning: A Survey of Concepts, Applications, and Trends (2405.00556v2)

Published 1 May 2024 in cs.LG

Abstract: Deep learning models have raised privacy and security concerns due to their reliance on large datasets on central servers. As the number of Internet of Things (IoT) devices increases, AI will be crucial for resource management, data processing, and knowledge acquisition. To address those issues, federated learning (FL) has introduced a novel approach to building a versatile, large-scale machine learning framework that operates in a decentralized and hardware-agnostic manner. However, FL faces network bandwidth limitations and data breaches. To reduce the central dependency in FL and increase scalability, swarm learning (SL) has been proposed in collaboration with Hewlett Packard Enterprise (HPE). SL represents a decentralized machine learning framework that leverages blockchain technology for secure, scalable, and private data management. A blockchain-based network enables the exchange and aggregation of model parameters among participants, thus mitigating the risk of a single point of failure and eliminating communication bottlenecks. To the best of our knowledge, this survey is the first to introduce the principles of Swarm Learning, its architectural design, and its fields of application. In addition, it highlights numerous research avenues that require further exploration by academic and industry communities to unlock the full potential and applications of SL.

Summary

We haven't generated a summary for this paper yet.