Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UWAFA-GAN: Ultra-Wide-Angle Fluorescein Angiography Transformation via Multi-scale Generation and Registration Enhancement (2405.00542v1)

Published 1 May 2024 in eess.IV and cs.CV

Abstract: Fundus photography, in combination with the ultra-wide-angle fundus (UWF) techniques, becomes an indispensable diagnostic tool in clinical settings by offering a more comprehensive view of the retina. Nonetheless, UWF fluorescein angiography (UWF-FA) necessitates the administration of a fluorescent dye via injection into the patient's hand or elbow unlike UWF scanning laser ophthalmoscopy (UWF-SLO). To mitigate potential adverse effects associated with injections, researchers have proposed the development of cross-modality medical image generation algorithms capable of converting UWF-SLO images into their UWF-FA counterparts. Current image generation techniques applied to fundus photography encounter difficulties in producing high-resolution retinal images, particularly in capturing minute vascular lesions. To address these issues, we introduce a novel conditional generative adversarial network (UWAFA-GAN) to synthesize UWF-FA from UWF-SLO. This approach employs multi-scale generators and an attention transmit module to efficiently extract both global structures and local lesions. Additionally, to counteract the image blurriness issue that arises from training with misaligned data, a registration module is integrated within this framework. Our method performs non-trivially on inception scores and details generation. Clinical user studies further indicate that the UWF-FA images generated by UWAFA-GAN are clinically comparable to authentic images in terms of diagnostic reliability. Empirical evaluations on our proprietary UWF image datasets elucidate that UWAFA-GAN outperforms extant methodologies. The code is accessible at https://github.com/Tinysqua/UWAFA-GAN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. Tavakkoli, S. A. Kamran, K. F. Hossain, and S. L. Zuckerbrod, “A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs,” Scientific Reports, vol. 10, no. 1, p. 21580, 2020.
  2. K. Kawai, T. Murakami, Y. Mori, K. Ishihara, Y. Dodo, N. Terada, K. Nishikawa, K. Morino, and A. Tsujikawa, “Clinically significant nonperfusion areas on widefield oct angiography in diabetic retinopathy,” Ophthalmology Science, vol. 3, no. 1, p. 100241, 2023.
  3. X. Wang, Z. Ji, X. Ma, Z. Zhang, Z. Yi, H. Zheng, W. Fan, and C. Chen, “Automated grading of diabetic retinopathy with ultra-widefield fluorescein angiography and deep learning,” Journal of Diabetes Research, vol. 2021, 2021.
  4. M. Ashraf, S. Shokrollahi, R. P. Salongcay, L. P. Aiello, and P. S. Silva, “Diabetic retinopathy and ultrawide field imaging,” in Seminars in Ophthalmology, vol. 35, 2020, pp. 56–65.
  5. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  6. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Interpretable representation learning by information maximizing generative adversarial nets,” Advances in neural information processing systems, vol. 29, 2016.
  7. M. Mehralian and B. Karasfi, “Rdcgan: Unsupervised representation learning with regularized deep convolutional generative adversarial networks,” in 2018 9th conference on artificial intelligence and robotics and 2nd Asia-pacific international symposium.   IEEE, 2018, pp. 31–38.
  8. K.-B. Park, S. H. Choi, and J. Y. Lee, “M-gan: Retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks,” IEEE Access, vol. 8, pp. 146 308–146 322, 2020.
  9. S. A. Kamran, K. F. Hossain, A. Tavakkoli, S. L. Zuckerbrod, and S. A. Baker, “Vtgan: Semi-supervised retinal image synthesis and disease prediction using vision transformers,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 3235–3245.
  10. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International Conference on Machine Learning.   PMLR, 2021, pp. 8162–8171.
  11. A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and M. Chen, “GLIDE: towards photorealistic image generation and editing with text-guided diffusion models,” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, ser. Proceedings of Machine Learning Research, vol. 162.   PMLR, 2022, pp. 16 784–16 804.
  12. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from natural language supervision,” in Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139.   PMLR, 2021, pp. 8748–8763.
  13. J. Ho and T. Salimans, “Classifier-free diffusion guidance,” in NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications, 2021.
  14. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” ACM Computing Surveys, 2022.
  15. C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi, “Palette: Image-to-image diffusion models,” in ACM SIGGRAPH 2022 Conference Proceedings, 2022, pp. 1–10.
  16. M. Ozbey, O. Dalmaz, S. U. Dar, H. A. Bedel, S. Ozturk, A. Gungor, and T. Cukur, “Unsupervised medical image translation with adversarial diffusion models,” IEEE Transactions on Medical Imaging, pp. 1–1, 2023.
  17. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1125–1134.
  18. M. U. Akram, S. Khalid, A. Tariq, S. A. Khan, and F. Azam, “Detection and classification of retinal lesions for grading of diabetic retinopathy,” Computers in biology and medicine, vol. 45, pp. 161–171, 2014.
  19. G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, “Making deep neural networks robust to label noise: A loss correction approach,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1944–1952.
  20. Y. Dgani, H. Greenspan, and J. Goldberger, “Training a neural network based on unreliable human annotation of medical images,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 39–42.
  21. L. Kong, C. Lian, D. Huang, Y. Hu, Q. Zhou et al., “Breaking the dilemma of medical image-to-image translation,” Advances in Neural Information Processing Systems, vol. 34, pp. 1964–1978, 2021.
  22. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-resolution image synthesis and semantic manipulation with conditional gans,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8798–8807.
  23. M. Binkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying MMD gans,” in 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.
  24. M. J. Chong and D. Forsyth, “Effectively unbiased fid and inception score and where to find them,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 6070–6079.
  25. U. Sara, M. Akter, and M. S. Uddin, “Image quality assessment through fsim, ssim, mse and psnr—a comparative study,” Journal of Computer and Communications, vol. 7, no. 3, pp. 8–18, 2019.
  26. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds.   Cham: Springer International Publishing, 2015, pp. 234–241.
  27. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, 2016, pp. 770–778.
  28. Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun, and G. Wang, “Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss,” IEEE transactions on medical imaging, vol. 37, no. 6, pp. 1348–1357, 2018.
  29. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.
  30. Z. Fang, Z. Chen, P. Wei, W. Li, S. Zhang, A. Elazab, G. Jia, R. Ge, and C. Wang, “Uwat-gan: Fundus fluorescein angiography synthesis via ultra-wide-angle transformation multi-scale gan,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2023, pp. 745–755.
  31. L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image diffusion models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3836–3847.
  32. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
  33. M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer networks,” 2016.
  34. M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar variational autoencoder,” in International conference on machine learning.   PMLR, 2017, pp. 1945–1954.
  35. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  36. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
Citations (2)

Summary

We haven't generated a summary for this paper yet.