Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heat, Health, and Habitats: Analyzing the Intersecting Risks of Climate and Demographic Shifts in Austrian Districts (2405.00540v1)

Published 1 May 2024 in cs.CY, econ.GN, physics.ao-ph, and q-fin.EC

Abstract: The impact of hot weather on health outcomes of a population is mediated by a variety of factors, including its age profile and local green infrastructure. The combination of warming due to climate change and demographic aging suggests that heat-related health outcomes will deteriorate in the coming decades. Here, we measure the relationship between weekly all-cause mortality and heat days in Austrian districts using a panel dataset covering $2015-2022$. An additional day reaching $30$ degrees is associated with a $2.4\%$ increase in mortality per $1000$ inhabitants during summer. This association is roughly doubled in districts with a two standard deviation above average share of the population over $65$. Using forecasts of hot days (RCP) and demographics in $2050$, we observe that districts will have elderly populations and hot days $2-5$ standard deviations above the current mean in just $25$ years. This predicts a drastic increase in heat-related mortality. At the same time, district green scores, measured using $10\times 10$ meter resolution satellite images of residential areas, significantly moderate the relationship between heat and mortality. Thus, although local policies likely cannot reverse warming or demographic trends, they can take measures to mediate the health consequences of these growing risks, which are highly heterogeneous across regions, even in Austria.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Extreme weather & Climate Change: Understanding the link and managing the risk. Tech. Rep., Center for Climate and Energy Solutions (2021).
  2. Vautard, R. et al. Heat extremes in western europe increasing faster than simulated due to atmospheric circulation trends. \JournalTitleNature Communications 14, 6803, DOI: 10.1038/s41467-023-42143-3 (2023). Open access.
  3. Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of european cities. \JournalTitleThe Lancet 0, DOI: 10.1016/S0140-6736(22)02585-5 (2023).
  4. Weilnhammer, V. et al. Extreme weather events in Europe and their health consequences – A systematic review. \JournalTitleInternational Journal of Hygiene and Environmental Health 233, 113688, DOI: 10.1016/j.ijheh.2021.113688 (2021).
  5. Massaro, E. et al. Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes. \JournalTitleNature Communications 14, 2903, DOI: 10.1038/s41467-023-38596-1 (2023). Number: 1 Publisher: Nature Publishing Group.
  6. Buzási, A. Comparative assessment of heatwave vulnerability factors for the districts of Budapest, Hungary. \JournalTitleUrban Climate 42, 101127, DOI: 10.1016/j.uclim.2022.101127 (2022).
  7. Mapping health vulnerability to short-term summer heat exposure based on a directional interaction network: Hotspots and coping strategies. \JournalTitleScience of The Total Environment 881, 163401, DOI: 10.1016/j.scitotenv.2023.163401 (2023).
  8. Filiberto, D. et al. Older people and climate change: Vulnerability and health effects. \JournalTitleGenerations 33, 19–25 (2009).
  9. Ballester, J. et al. Heat-related mortality in Europe during the summer of 2022. \JournalTitleNature Medicine 1–10, DOI: 10.1038/s41591-023-02419-z (2023). Publisher: Nature Publishing Group.
  10. Lüthi, S. et al. Rapid increase in the risk of heat-related mortality. \JournalTitleNature Communications 14, 4894, DOI: 10.1038/s41467-023-40599-x (2023).
  11. Bhatta, M. et al. Examining the heat health burden in australia: A rapid review. \JournalTitleClimate 11, DOI: 10.3390/cli11120246 (2023).
  12. Mortality displacement of heat-related deaths: a comparison of Delhi, Sao Paulo, and London. \JournalTitleEpidemiology 16, 613–620, DOI: 10.1097/01.ede.0000164559.41092.2a (2005).
  13. Griebler, R. et al. Herz-kreislauf-erkrankungen in Österreich. URL: https://www.sozialministerium.at/dam/jcr:ef1ec0fd-01a7-4047-9828-42ce906a2239/Bericht__HKE_2020_2021_Mit_Titelbild.pdf (2021).
  14. Leung, M. et al. Ambient temperature during pregnancy and fetal growth in Eastern Massachusetts, USA. \JournalTitleInternational Journal of Epidemiology 52, 749–760, DOI: 10.1093/ije/dyac228 (2022).
  15. Nyadanu, S. D. et al. Critical windows of maternal exposure to biothermal stress and birth weight for gestational age in western australia. \JournalTitleEnvironmental Health Perspectives 131, 127017, DOI: 10.1289/EHP12660 (2023). https://ehp.niehs.nih.gov/doi/pdf/10.1289/EHP12660.
  16. Post-conception heat exposure increases clinically unobserved pregnancy losses. \JournalTitleScientific Reports 11, 1987, DOI: 10.1038/s41598-021-81496-x (2021).
  17. Extreme temperatures during pregnancy and adverse birth outcomes: Evidence from 2009 to 2018 u.s. national birth data. \JournalTitleHealth Economics 31, 1993–2024, DOI: 10.1002/hec.4559 (2022).
  18. Hajdu, T. The effect of temperature on birth rates in Europe. \JournalTitlePopulation and Environment 46, 9 (2024).
  19. Hajdu, T. Temperature exposure and sleep duration: Evidence from time use surveys. URL: https://hdl.handle.net/10419/282246 (2023).
  20. Eurostat. An ageing population. https://ec.europa.eu/eurostat/cache/digpub/demography_2022/bloc-1c.html?lang=en (Accessed 25.04.2024). ©European Union, 1995-2024.
  21. Österreichische Raumordnungskonferenz (ÖROK). Demographisches Jahrbuch 2022 (Geschäftsstelle der Österreichischen Raumordnungskonferenz (ÖROK), Wien, 2022). ISBN/ISSN: 20-1110-22, 978-3-903393-63-9.
  22. Observed trends in thermal stress at european cities with different background climates. \JournalTitleAtmosphere 10, DOI: 10.3390/atmos10080436 (2019).
  23. How does anthropogenic heating affect the thermal environment in a medium-sized Central European city? A case study in Szeged, Hungary. \JournalTitleUrban Climate 34, 100673 (2020).
  24. Synergies between urban heat island and heat waves in athens (greece), during an extremely hot summer (2012). \JournalTitleScientific Reports 7, DOI: 10.1038/s41598-017-11407-6 (2017).
  25. Green space and deaths attributable to the urban heat island effect in Ho Chi Minh City. \JournalTitleAmerican journal of public health 108, S137–S143 (2018).
  26. Emergence of urban heat traps from the intersection of human mobility and heat hazard exposure in cities. \JournalTitleSSRN Electronic Journal DOI: 10.2139/ssrn.4341768 (2023).
  27. Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. \JournalTitleThe Lancet 401, 577–589 (2023).
  28. Boosting african cities’ resilience to climate change: The role of green spaces. \JournalTitleWest African Papers DOI: 10.1787/3303cfb3-en (2022). Series: West African Papers Volume: 37.
  29. The impact of environmental and human factors on urban heat and microclimate variability. \JournalTitleBuilding and Environment 95, 199–208, DOI: https://doi.org/10.1016/j.buildenv.2015.09.024 (2016).
  30. STATISTICS AUSTRIA. STAT-Landcover. https://www.statistik.at/atlas/?mapid=topo_eo_landcover (Landcover Classification - 2019).
  31. Zanaga, D. et al. Esa worldcover 10 m 2021 v200. URL: https://esa-worldcover.org/en/about/about, DOI: 10.5281/zenodo.7254221 (2022). Version v200.
  32. Contribution of air conditioning adoption to future energy use under global warming. \JournalTitleProceedings of the National Academy of Sciences 112, 5962–5967 (2015).
  33. Pitfalls in diagnosing temperature extremes. \JournalTitleNature Communications 15, 2087, DOI: 10.1038/s41467-024-46349-x (2024).
  34. Cost/benefit assessment of green infrastructure: Spatial scale effects on uncertainty and sensitivity. \JournalTitleJournal of Environmental Management 302, 114009 (2022).
  35. Austria. Austria’s seventh national communication. URL: https://unfccc.int/sites/default/files/resource/69823015_Austria-NC7-1-AT_NC7.pdf (Submission date 08 Feb 2018). Accessed on April 21, 2024.
  36. United Nations Development Programme. Human development index data for austria (2024). Accessed on April 11, 2024.
  37. European Commission and Directorate-General for Health and Food Safety. State of health in the EU – Synthesis report 2023 (Publications Office of the European Union, 2023). DOI: https://data.europa.eu/doi/10.2875/458883.
  38. From data to insights: Constructing spatiotemporal knowledge graphs for city resilience use cases. In D2R2’23: 2nd Int’l Workshop on Linked Data-driven Resilience Research 2023, ESWC2023 (2023). https://ceur-ws.org/Vol-3401/paper1.pdf.
  39. STATISTICS AUSTRIA. Gliederung Österreichs in Gemeinden - municipalities. https://data.statistik.gv.at/web/meta.jsp?dataset=OGDEXT_GEM_1 (2023).
  40. STATISTICS AUSTRIA. Gliederung Österreichs in Politische Bezirke - political districts. https://data.statistik.gv.at/web/meta.jsp?dataset=OGDEXT_POLBEZ_1 (2023).
  41. GeoSphere Austria. Spartacus v2.1 tagesdaten. https://doi.org/10.60669/dnsv-ay89 (2020). Creative Commons Attribution 4.0 License.
  42. STATISTICS AUSTRIA. Statatlas. https://www.statistik.at/atlas/. Version 1.1.17.
  43. Stress-testing road networks and access to medical care. \JournalTitleTransportation Research Part A: Policy and Practice 181, 104017 (2024).
  44. STATISTICS AUSTRIA. Kleinräumige Bevölkerungsprognosen - ÖROK-Prognose 2021. https://www.statistik.at/statistiken/bevoelkerung-und-soziales/bevoelkerung/demographische-prognosen/kleinraeumige-bevoelkerungsprognosen (2021).
  45. ÖKS Projekt-Konsortium. ENDBERICHT | ÖKS 15 – Klimaszenarien für Österreich | Daten – Methoden - Klimaanalyse. Available athttps://www.bmk.gv.at/themen/klima_umwelt/klimaschutz/anpassungsstrategie/publikationen/oeks15.html. Accessed 27.04.2024.

Summary

We haven't generated a summary for this paper yet.