Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using non-DESI data to confirm and strengthen the DESI 2024 spatially-flat $w_0w_a$CDM cosmological parameterization result (2405.00502v3)

Published 1 May 2024 in astro-ph.CO, gr-qc, hep-ph, and hep-th

Abstract: We use a combination of Planck cosmic microwave background (CMB) anisotropy data and non-CMB data that include Pantheon+ type Ia supernovae (SNIa), Hubble parameter [$H(z)$], growth factor ($f\sigma_8$) measurements, and a collection of baryon acoustic oscillation (BAO) data, but not recent DESI 2024 BAO measurements, to confirm the DESI 2024 (DESI+CMB+PantheonPlus) data compilation support for dynamical dark energy with an evolving equation of state parameter $w(z) = w_0 + w_a z/(1+z)$. From our joint compilation of CMB and non-CMB data, in a spatially-flat cosmological model, we obtain $w_0 = -0.850 \pm 0.059$ and $w_a = -0.59{+0.26}_{-0.22}$ and find that this dynamical dark energy is favored over a cosmological constant by $\sim 2\sigma$. Our data constraints on the flat $w_0w_a$CDM parameterization are slightly more restrictive than the DESI 2024 constraints, with the DESI 2024 and our values of $w_0$ and $w_a$ differing by $-0.27\sigma$ and $0.44\sigma$, respectively. Our data compilation slightly more strongly favors the flat $w_0w_a$CDM model over the flat $\Lambda$CDM model than does the DESI 2024 data compilation. We note that our CMB and non-CMB data $w_0w_a$CDM parameterization cosmological constraints are discrepant at 2.7$\sigma$, a little larger than the 1.9$\sigma$ discrepancy between DESI DR1 BAO and CMB data flat $\Lambda$CDM model cosmological constraints. We also show that if we remove the Pantheon+ SNIa contribution from the non-CMB data, for the $w_0w_a$CDM parameterization we still find tension between P18 and non-CMB data (2.5$\sigma$) and P18+lensing and non-CMB data (2.4$\sigma$). Even after the exclusion of Pantheon+ SNIa data the $\Lambda$CDM model is still disfavoured at $\sim 2\sigma$ c.l.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. P. J. E. Peebles, Tests of Cosmological Models Constrained by Inflation, Astrophys. J. 284, 439 (1984).
  2. L. Perivolaropoulos and F. Skara, Challenges for ΛΛ\Lambdaroman_ΛCDM: An update, New Astron. Rev. 95, 101659 (2022), arXiv:2105.05208 [astro-ph.CO] .
  3. M. Moresco et al., Unveiling the Universe with emerging cosmological probes, Living Rev. Rel. 25, 6 (2022), arXiv:2201.07241 [astro-ph.CO] .
  4. J.-P. Hu and F.-Y. Wang, Hubble Tension: The Evidence of New Physics, Universe 9, 94 (2023), arXiv:2302.05709 [astro-ph.CO] .
  5. A. G. Adame et al. (DESI), DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations,   (2024), arXiv:2404.03002 [astro-ph.CO] .
  6. M. Chevallier and D. Polarski, Accelerating universes with scaling dark matter, Int. J. Mod. Phys. D 10, 213 (2001), arXiv:gr-qc/0009008 .
  7. E. V. Linder, Exploring the expansion history of the universe, Phys. Rev. Lett. 90, 091301 (2003), arXiv:astro-ph/0208512 .
  8. J. Solà, A. Gómez-Valent, and J. de Cruz Pérez, Dynamical dark energy: scalar fields and running vacuum, Mod. Phys. Lett. A 32, 1750054 (2017), arXiv:1610.08965 [astro-ph.CO] .
  9. J. Ooba, B. Ratra, and N. Sugiyama, Planck 2015 constraints on spatially-flat dynamical dark energy models, Astrophys. Space Sci. 364, 176 (2019), arXiv:1802.05571 [astro-ph.CO] .
  10. C.-G. Park and B. Ratra, Observational constraints on the tilted spatially-flat and the untilted nonflat ϕitalic-ϕ\phiitalic_ϕCDM dynamical dark energy inflation models, Astrophys. J. 868, 83 (2018), arXiv:1807.07421 [astro-ph.CO] .
  11. J. Solà Peracaula, A. Gómez-Valent, and J. de Cruz Pérez, Signs of Dynamical Dark Energy in Current Observations, Phys. Dark Univ. 25, 100311 (2019), arXiv:1811.03505 [astro-ph.CO] .
  12. S. Cao, J. Ryan, and B. Ratra, Cosmological constraints from H ii starburst galaxy apparent magnitude and other cosmological measurements, Mon. Not. Roy. Astron. Soc. 497, 3191 (2020), arXiv:2005.12617 [astro-ph.CO] .
  13. N. Khadka and B. Ratra, Constraints on cosmological parameters from gamma-ray burst peak photon energy and bolometric fluence measurements and other data, Mon. Not. Roy. Astron. Soc. 499, 391 (2020), arXiv:2007.13907 [astro-ph.CO] .
  14. M. Van Raamsdonk and C. Waddell, Possible hints of decreasing dark energy from supernova data,  arXiv:2305.04946 [astro-ph.CO] .
  15. J. de Cruz Pérez, C.-G. Park, and B. Ratra, Updated observational constraints on spatially-flat and non-flat ΛΛ\Lambdaroman_ΛCDM and XCDM cosmological models,   (2024), arXiv:2404.19194 [astro-ph.CO] .
  16. P. J. E. Peebles and B. Ratra, Cosmology with a Time Variable Cosmological Constant, Astrophys. J. Lett. 325, L17 (1988).
  17. B. Ratra and P. J. E. Peebles, Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev. D 37, 3406 (1988).
  18. Y. Tada and T. Terada, Quintessential interpretation of the evolving dark energy in light of DESI,   (2024), arXiv:2404.05722 [astro-ph.CO] .
  19. K. V. Berghaus, J. A. Kable, and V. Miranda, Quantifying Scalar Field Dynamics with DESI 2024 Y1 BAO measurements,   (2024), arXiv:2404.14341 [astro-ph.CO] .
  20. D. Wang, Constraining Cosmological Physics with DESI BAO Observations,   (2024a), arXiv:2404.06796 [astro-ph.CO] .
  21. O. Luongo and M. Muccino, Model independent cosmographic constraints from DESI 2024,   (2024), arXiv:2404.07070 [astro-ph.CO] .
  22. M. Cortês and A. R. Liddle, Interpreting DESI’s evidence for evolving dark energy,   (2024), arXiv:2404.08056 [astro-ph.CO] .
  23. D. Wang, The Self-Consistency of DESI Analysis and Comment on ”Does DESI 2024 Confirm ΛΛ\Lambdaroman_ΛCDM?”,   (2024b), arXiv:2404.13833 [astro-ph.CO] .
  24. H. Wang and Y.-S. Piao, Dark energy in light of recent DESI BAO and Hubble tension,   (2024), arXiv:2404.18579 [astro-ph.CO] .
  25. N. Aghanim et al. (Planck), Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys. 641, A1 (2020a), arXiv:1807.06205 [astro-ph.CO] .
  26. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020b), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  27. D. Brout et al., The Pantheon+ Analysis: Cosmological Constraints, Astrophys. J. 938, 110 (2022), arXiv:2202.04077 [astro-ph.CO] .
  28. A. Challinor and A. Lasenby, Cosmic microwave background anisotropies in the CDM model: A Covariant and gauge invariant approach, Astrophys. J. 513, 1 (1999), arXiv:astro-ph/9804301 .
  29. A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538, 473 (2000), arXiv:astro-ph/9911177 .
  30. A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66, 103511 (2002), arXiv:astro-ph/0205436 .
  31. A. Lewis, GetDist: a Python package for analysing Monte Carlo samples,  arXiv:1910.13970 [astro-ph.IM] .
  32. F. Lucchin and S. Matarrese, Power Law Inflation, Phys. Rev. D 32, 1316 (1985).
  33. B. Ratra, Quantum Mechanics of Exponential Potential Inflation, Phys. Rev. D 40, 3939 (1989).
  34. B. Ratra, Inflation in an Exponential Potential Scalar Field Model, Phys. Rev. D 45, 1913 (1992).
  35. S. Joudaki et al., CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics, Mon. Not. Roy. Astron. Soc. 465, 2033 (2017), arXiv:1601.05786 [astro-ph.CO] .
  36. W. Handley and P. Lemos, Quantifying dimensionality: Bayesian cosmological model complexities, Phys. Rev. D 100, 023512 (2019a), arXiv:1903.06682.
  37. W. Handley and P. Lemos, Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio, Phys. Rev. D 100, 043504 (2019b), arXiv:1902.04029.
  38. W. Handley, Curvature tension: evidence for a closed universe, Phys. Rev. D 103, L041301 (2021), arXiv:arXiv:1908.09139 [astro-ph.CO] .
  39. J. de Cruz Pérez, C.-G. Park, and B. Ratra, Current data are consistent with flat spatial hypersurfaces in the ΛΛ\Lambdaroman_ΛCDM cosmological model but favor more lensing than the model predicts, Phys. Rev. D 107, 063522 (2023), arXiv:2211.04268 [astro-ph.CO] .
  40. M. Tristram et al., Cosmological parameters derived from the final Planck data release (PR4), Astron. Astrophys. 682, A37 (2024), arXiv:2309.10034 [astro-ph.CO] .
  41. D. Rubin et al., Union Through UNITY: Cosmology with 2,000 SNe Using a Unified Bayesian Framework,   (2023), arXiv:2311.12098 [astro-ph.CO] .
  42. T. M. C. Abbott et al. (DES), The Dark Energy Survey: Cosmology Results With ~1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset,   (2024), arXiv:2401.02929 [astro-ph.CO] .
  43. G. Chen and B. Ratra, Median statistics and the Hubble constant, Publ. Astron. Soc. Pac. 123, 1127 (2011), arXiv:1105.5206., arXiv:1105.5206 [astro-ph.CO] .
  44. W. L. Freedman, Measurements of the Hubble Constant: Tensions in Perspective, Astrophys. J. 919, 16 (2021), arXiv:2106.15656 [astro-ph.CO] .
  45. A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team, Astrophys. J. Lett. 934, L7 (2022), arXiv:2112.04510 [astro-ph.CO] .
  46. M. S. Madhavacheril et al. (ACT), The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters, Astrophys. J. 962, 113 (2024), arXiv:2304.05203 [astro-ph.CO] .
  47. F. J. Qu et al. (ACT), The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth, Astrophys. J. 962, 112 (2024), arXiv:2304.05202 [astro-ph.CO] .
  48. N. MacCrann et al. (ACT), The Atacama Cosmology Telescope: Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis,   (2023), arXiv:2304.05196 [astro-ph.CO] .
Citations (17)

Summary

We haven't generated a summary for this paper yet.