Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robot-As-A-Sensor: Forming a Sensing Network with Robots for Underground Mining Missions (2405.00266v1)

Published 1 May 2024 in cs.NI

Abstract: Nowadays, robots are deployed as mobile platforms equipped with sensing, communication and computing capabilities, especially in the mining industry, where they perform tasks in hazardous and repetitive environments. Despite their potential, individual robots face significant limitations when completing complex tasks that require the collaboration of multiple robots. This collaboration requires a robust wireless network to ensure operational efficiency and reliability. This paper introduces the concept of "Robot-As-A-Sensor" (RAAS), which treats the robots as mobile sensors within structures similar to Wireless Sensor Networks (WSNs). We later identify specific challenges in integrating RAAS technology and propose technological advancements to address these challenges. Finally, we provide an outlook about the technologies that can contribute to realising RAAS, suggesting that this approach could catalyse a shift towards safer, more intelligent, and sustainable industry practices. We believe that this innovative RAAS framework could significantly transform industries requiring advanced technological integration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. J. Leng, W. Sha, B. Wang, P. Zheng, C. Zhuang, Q. Liu, T. Wuest, D. Mourtzis, and L. Wang, “Industry 5.0: Prospect and retrospect,” Journal of Manufacturing Systems, vol. 65, 279–295, 2022.
  2. X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and industry 5.0—inception, conception and perception,” Journal of manufacturing systems, vol. 61, 530–535, 2021.
  3. S. Huang, B. Wang, X. Li, P. Zheng, D. Mourtzis, and L. Wang, “Industry 5.0 and society 5.0—comparison, complementation and co-evolution,” Journal of manufacturing systems, vol. 64, 424–428, 2022.
  4. L. Chen, J. Xie, X. Zhang, J. Deng, S. Ge, and F.-Y. Wang, “Mining 5.0: Concept and framework for intelligent mining systems in cpss,” IEEE Transactions on Intelligent Vehicles, 2023.
  5. C. Xu, H. Fu, L. Ma, W. Jia, C. Zhang, F. Xia, X. Ai, B. Li, and W. Zhang, “Seeing text in the dark: Algorithm and benchmark,” arXiv preprint arXiv:2404.08965, 2024.
  6. Y.-f. Zhang, J. Zheng, L. Li, N. Liu, W. Jia, X. Fan, C. Xu, and X. He, “Rethinking feature aggregation for deep rgb-d salient object detection,” Neurocomputing, vol. 423, 463–473, 2021.
  7. S. Saydam, C. Xu, B. Li, B. Topal, and S. Saydam, “Feature sampling and balancing for detecting rock bolts from the lidar point clouds,” in ISRM Congress, ISRM–15CONGRESS, ISRM, 2023.
  8. C. Xu, R. Wang, S. Lin, X. Luo, B. Zhao, L. Shao, and M. Hu, “Lecture2note: Automatic generation of lecture notes from slide-based educational videos,” in 2019 IEEE International Conference on Multimedia and Expo (ICME), 898–903, IEEE, 2019.
  9. C. Xu, W. Jia, R. Wang, X. He, B. Zhao, and Y. Zhang, “Semantic navigation of powerpoint-based lecture video for autonote generation,” IEEE Transactions on Learning Technologies, vol. 16, no. 1, 1–17, 2022.
  10. C. Xu, W. Jia, R. Wang, X. Luo, and X. He, “Morphtext: Deep morphology regularized accurate arbitrary-shape scene text detection,” IEEE Trans. Multimedia, 2022.
  11. Z. Wang, P. Sokliep, C. Xu, J. Huang, L. Lu, and Z. Shi, “Indoor position algorithm based on the fusion of wifi and image,” in 2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI), 212–216, IEEE, 2019.
  12. C. Xu, W. Jia, T. Cui, R. Wang, Y.-f. Zhang, and X. He, “Arbitrary-shape scene text detection via visual-relational rectification and contour approximation,” IEEE Trans. Multimedia, 2022.
  13. Z. Gu, X. Yang, W. Jia, C. Xu, P. Yu, X. He, H. Chen, and Y. Lin, “Strokepeo: Construction of a clinical ontology for physical examination of stroke,” in 2022 9th International Conference on Digital Home (ICDH), 218–223, IEEE, 2022.
  14. Y. Zhang, J. Li, K. Luo, Y. Yang, J. Han, N. Liu, D. Qin, P. Han, and C. Xu, “V2vssc: A 3d semantic scene completion benchmark for perception with vehicle to vehicle communication,” arXiv preprint arXiv:2402.04671, 2024.
  15. K. Gulati, R. S. K. Boddu, D. Kapila, S. L. Bangare, N. Chandnani, and G. Saravanan, “A review paper on wireless sensor network techniques in internet of things (iot),” Materials Today: Proceedings, vol. 51, 161–165, 2022.
  16. G. Zhou, L. Fang, K. Tang, H. Zhang, K. Wang, and K. Yang, “Guidance: A visual sensing platform for robotic applications,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 9–14, 2015.
  17. J. Szrek, J. Wodecki, R. Blazej, and R. Zimroz, “An inspection robot for belt conveyor maintenance in underground mine—infrared thermography for overheated idlers detection,” Applied Sciences, vol. 10, no. 14, 4984, 2020.
  18. P. Trybała, J. Szrek, F. Remondino, J. Wodecki, and R. Zimroz, “Calibration of a multi-sensor wheeled robot for the 3d mapping of underground mining tunnels,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022.
  19. I. Qadri, A. Muneer, and S. M. Fati, “Automatic robotic scanning and inspection mechanism for mines using iot.,” in IOP conference series: Materials science and engineering, vol. 1045, 012001, IOP Publishing, 2021.
  20. Y. Yu, J. Li, S. A. Solomon, J. Min, J. Tu, W. Guo, C. Xu, Y. Song, and W. Gao, “All-printed soft human-machine interface for robotic physicochemical sensing,” Science robotics, vol. 7, no. 67, eabn0495, 2022.
  21. P. Mishra, A. Swain, S. Kumar, and S. K. Mandal, “Wireless paging system for underground mines,” Radioelectronics and Communications Systems, vol. 64, 14–25, 2021.
  22. M. A. Moridi, M. Sharifzadeh, Y. Kawamura, and H. Jang, “Development of wireless sensor networks for underground communication and monitoring systems (the cases of underground mine environments),” Tunnelling and Underground Space Technology, vol. 73, 127–138, 2018.
  23. D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of wireless sensor networks: an up-to-date survey,” Applied system innovation, vol. 3, no. 1, 14, 2020.
  24. R. E. Mohamed, A. I. Saleh, M. Abdelrazzak, and A. S. Samra, “Survey on wireless sensor network applications and energy efficient routing protocols,” Wireless Personal Communications, vol. 101, 1019–1055, 2018.
  25. M. Li and Y. Liu, “Underground coal mine monitoring with wireless sensor networks,” in ACM Trans. Sens. Networks, vol. 5, 1–29, 2009.
  26. J. Shibalabala and T. Swart, “Performance analysis of wireless mesh networks for underground mines,” in 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 1–6, 2020.
  27. L. Bandyopadhyay, S. K. Chaulya, P. Mishra, A. Choure, and B. M. Baveja, “Wireless information and safety system for mines,” Safety Science, vol. 47, no. 5, 616–624, 2009.
  28. P. Branch, B. Li, and K. Zhao, “A lora-based linear sensor network for location data in underground mining,” in Telecom, vol. 1, 6, MDPI, 2020.
  29. W. Liu, K. Lu, J. Wang, G. Xing, and L. Huang, “Performance analysis of wireless sensor networks with mobile sinks,” IEEE transactions on vehicular technology, vol. 61, no. 6, 2777–2788, 2012.
  30. C. Namislo, “Analysis of mobile radio slotted aloha networks,” IEEE Journal on Selected Areas in Communications, vol. 2, no. 4, 583–588, 1984.
  31. T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network research,” Wireless communications and mobile computing, vol. 2, no. 5, 483–502, 2002.
  32. A. AlKhatieb, E. Felemban, and A. Naseer, “Performance evaluation of ad-hoc routing protocols in (fanets),” in 2020 IEEE wireless communications and networking conference workshops (WCNCW), 1–6, IEEE, 2020.
  33. C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector (aodv) routing,” tech. rep., 2003.
  34. I. D. Chakeres and E. M. Belding-Royer, “Aodv routing protocol implementation design,” in 24th International Conference on Distributed Computing Systems Workshops, 2004. Proceedings., 698–703, IEEE, 2004.
  35. N. Temene, C. Sergiou, C. Georgiou, and V. Vassiliou, “A survey on mobility in wireless sensor networks,” Ad Hoc Networks, vol. 125, 102726, 2022.
  36. D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005.
  37. P. Branch, “Measurements and models of 915 mhz lora radio propagation in an underground gold mine,” Sensors, vol. 22, no. 22, 2022.
  38. L. Lovász, “On the shannon capacity of a graph,” IEEE Transactions on Information theory, vol. 25, no. 1, 1–7, 1979.
  39. P. Mogensen, W. Na, I. Z. Kovács, F. Frederiksen, A. Pokhariyal, K. I. Pedersen, T. Kolding, K. Hugl, and M. Kuusela, “Lte capacity compared to the shannon bound,” in 2007 IEEE 65th vehicular technology conference-VTC2007-Spring, 1234–1238, IEEE, 2007.
  40. M. Aslam, X. Jiao, W. Liu, M. Mehari, T. Havinga, and I. Moerman, “A novel hardware efficient design for ieee 802.11ax compliant ofdma transceiver,” Computer Communications, vol. 219, 173–181, 2024.
  41. U. Noreen, A. Bounceur, and L. Clavier, “A study of lora low power and wide area network technology,” in 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 1–6, IEEE, 2017.
  42. J. A. Afonso, A. J. F. Maio, and R. Simoes, “Performance evaluation of bluetooth low energy for high data rate body area networks,” Wireless Personal Communications, vol. 90, 121–141, 2016.
  43. S. Murayama and F. Tobagi, “Multimedia data transmission over wireless network with interference,” IEICE Trans. Commun., vol. 90-B, 651–659, 2007.
  44. M. Civanlar and A. Reibman, “Signal processing for networked multimedia,” IEEE Signal Process. Mag., vol. 14, 39–41, 1997.
  45. A. A. Ahmed, “A real-time routing protocol with adaptive traffic shaping for multimedia streaming over next-generation of wireless multimedia sensor networks,” Pervasive Mob. Comput., vol. 40, 495–511, 2017.
  46. J. Silvestre-Blanes, L. Almeida, R. Marau, and P. Pedreiras, “Online qos management for multimedia real-time transmission in industrial networks,” IEEE Transactions on Industrial Electronics, vol. 58, 1061–1071, 2011.
  47. F. Liu, Y. Cui, C. Masouros, J. Xu, T. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6g and beyond,” IEEE Journal on Selected Areas in Communications, vol. 40, 1728–1767, 2021.
  48. C. Ouyang, Y. Liu, and H. Yang, “Performance of downlink and uplink integrated sensing and communications (isac) systems,” IEEE Wireless Communications Letters, vol. 11, no. 9, 1850–1854, 2022.
  49. Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communications for ubiquitous iot: Applications, trends, and challenges,” IEEE Network, vol. 35, no. 5, 158–167, 2021.
  50. Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang, and Z. Feng, “Integrated sensing and communication signals toward 5g-a and 6g: A survey,” IEEE Internet of Things Journal, vol. 10, 11068–11092, 2023.
  51. S.-J. Lu, F. Liu, Y. Li, K. Zhang, H. Huang, J. Zou, X. Li, Y. Dong, F. Dong, J. Zhu, Y. Xiong, W. Yuan, Y. Cui, and L. Hanzo, “Integrated sensing and communications: Recent advances and ten open challenges,” ArXiv, vol. abs/2305.00179, 2023.
  52. T. Wild, V. Braun, and H. Viswanathan, “Joint design of communication and sensing for beyond 5g and 6g systems,” IEEE Access, vol. 9, 30845–30857, 2021.
  53. T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge computing in industrial internet of things: Architecture, advances and challenges,” IEEE Communications Surveys & Tutorials, vol. 22, 2462–2488, 2020.
  54. X. Zhou, X. he Yang, J. Ma, and K. Wang, “Energy-efficient smart routing based on link correlation mining for wireless edge computing in iot,” IEEE Internet of Things Journal, vol. 9, 14988–14997, 2021.
  55. W. Jian, Q. Shi-jia, C. Xiao-lin, and F. Li-li, “Research on reliability of mine data based on blockchain and edge computing,” in 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), 399–404, 2021.
  56. W. Cheng, X. Liu, and G. Nie, “Task offloading and resource allocation method for edge computing in intelligent coal mining,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 1–6, 2023.
  57. J. Yin, X. Luo, Y. Zhu, W. Wang, L. Wang, C. Huang, and J.-H. Wang, “An edge computing‐based predictive evaluation scheme toward geological drilling data using long short‐term memory network,” Transactions on Emerging Telecommunications Technologies, vol. 32, 2020.
  58. Z. Qin, X. Tao, J. Lu, and G. Y. Li, “Semantic communications: Principles and challenges,” ArXiv, 2021.
  59. W. li Yu and J. Zhao, “Semantic communications, semantic edge computing, and semantic caching with applications to the metaverse and 6g mobile networks,” 2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS), 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com