Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real Stability and Log Concavity are coNP-Hard (2405.00162v2)

Published 30 Apr 2024 in math.OC, cs.CC, and math.CO

Abstract: Real-stable, Lorentzian, and log-concave polynomials are well-studied classes of polynomials, and have been powerful tools in resolving several conjectures. We show that the problems of deciding whether a polynomial of fixed degree is real stable or log concave are coNP-hard. On the other hand, while all homogeneous real-stable polynomials are Lorentzian and all Lorentzian polynomials are log concave on the positive orthant, the problem of deciding whether a polynomial of fixed degree is Lorentzian can be solved in polynomial time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. NP-hardness of deciding convexity of quartic polynomials and related problems. Mathematical Programming, 137(1–2):453–476, November 2011. ISSN 1436-4646. doi: 10.1007/s10107-011-0499-2. URL http://dx.doi.org/10.1007/s10107-011-0499-2.
  2. Log-concave polynomials, I: entropy and a deterministic approximation algorithm for counting bases of matroids. Duke Math. J., 170(16):3459–3504, 2021. ISSN 0012-7094,1547-7398. doi: 10.1215/00127094-2020-0091. URL https://doi.org/10.1215/00127094-2020-0091.
  3. Log-concave polynomials III: Mason’s ultra-log-concavity conjecture for independent sets of matroids. Proc. Amer. Math. Soc., 152(5):1969–1981, 2024. ISSN 0002-9939,1088-6826. doi: 10.1090/proc/16724. URL https://doi.org/10.1090/proc/16724.
  4. Diagonalization of quadratic forms by Gauss elimination. Management Sci., 12:371–379, 1966. ISSN 0025-1909. doi: 10.1287/mnsc.12.5.371. URL https://doi.org/10.1287/mnsc.12.5.371.
  5. J. Borcea and P. Brändén. Multivariate Pólya-Schur classification problems in the Weyl algebra. Proc. Lond. Math. Soc. (3), 101(1):73–104, 2010. ISSN 0024-6115,1460-244X. doi: 10.1112/plms/pdp049. URL https://doi.org/10.1112/plms/pdp049.
  6. Pólya-Schur master theorems for circular domains and their boundaries. Ann. of Math. (2), 170(1):465–492, 2009. ISSN 0003-486X,1939-8980. doi: 10.4007/annals.2009.170.465. URL https://doi.org/10.4007/annals.2009.170.465.
  7. Lorentzian polynomials. Annals of Mathematics, 192(3):821 – 891, 2020. doi: 10.4007/annals.2020.192.3.4. URL https://doi.org/10.4007/annals.2020.192.3.4.
  8. Papri Dey. Polynomials with Lorentzian signature, and computing permanents via hyperbolic programming, 2023. URL https://arxiv.org/abs/2206.02759.
  9. Lars Gårding. Linear hyperbolic partial differential equations with constant coefficients. Acta Mathematica, 85(0):1–62, 1951. ISSN 0001-5962. doi: 10.1007/bf02395740. URL http://dx.doi.org/10.1007/BF02395740.
  10. Lars Gårding. An inequality for hyperbolic polynomials. Journal of Mathematics and Mechanics, 8(6):957–965, 1959. ISSN 00959057, 19435274. URL http://www.jstor.org/stable/24900665.
  11. Osman Güler. Hyperbolic polynomials and interior point methods for convex programming. Mathematics of Operations Research, 22(2):350–377, 1997. ISSN 0364765X, 15265471. URL http://www.jstor.org/stable/3690269.
  12. Log-concavity of the Alexander polynomial, 2023. URL https://arxiv.org/abs/2303.04733.
  13. June Huh. Combinatorics and Hodge theory, page 212–239. EMS Press, December 2023. ISBN 9783985475599. doi: 10.4171/icm2022/205. URL http://dx.doi.org/10.4171/ICM2022/205.
  14. Logarithmic concavity of schur and related polynomials. Transactions of the American Mathematical Society, 375(6):4411–4427, March 2022. ISSN 1088-6850. doi: 10.1090/tran/8606. URL http://dx.doi.org/10.1090/tran/8606.
  15. Richard M. Karp. Reducibility among Combinatorial Problems, page 85–103. Springer US, 1972. ISBN 9781468420012. doi: 10.1007/978-1-4684-2001-2˙9. URL http://dx.doi.org/10.1007/978-1-4684-2001-2_9.
  16. Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM Journal on Optimization, 20(3):1286–1310, 2010.
  17. Interlacing families II: Mixed characteristic polynomials and the Kadison–Singer problem. Annals of Mathematics, page 327–350, July 2015a. ISSN 0003-486X. doi: 10.4007/annals.2015.182.1.8. URL http://dx.doi.org/10.4007/annals.2015.182.1.8.
  18. Interlacing families I: Bipartite Ramanujan graphs of all degrees. Annals of Mathematics, page 307–325, July 2015b. ISSN 0003-486X. doi: 10.4007/annals.2015.182.1.7. URL http://dx.doi.org/10.4007/annals.2015.182.1.7.
  19. Interlacing families IV: Bipartite Ramanujan graphs of all sizes. SIAM Journal on Computing, 47(6):2488–2509, January 2018. ISSN 1095-7111. doi: 10.1137/16m106176x. URL http://dx.doi.org/10.1137/16M106176X.
  20. Maxima for graphs and a new proof of a theorem of Turán. Canadian Journal of Mathematics, 17:533–540, 1965. doi: 10.4153/CJM-1965-053-6.
  21. Yu Nesterov. Random walk in a simplex and quadratic optimization over convex polytopes. LIDAM Discussion Papers CORE 2003071, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), October 2003. URL https://ideas.repec.org/p/cor/louvco/2003071.html.
  22. Real stability testing. In 8th Innovations in Theoretical Computer Science Conference, volume 67 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 5, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017. ISBN 978-3-95977-029-3.
  23. James Saunderson. Certifying polynomial nonnegativity via hyperbolic optimization. SIAM Journal on Applied Algebra and Geometry, 3(4):661–690, 2019. doi: 10.1137/19M1253551. URL https://doi.org/10.1137/19M1253551.
Citations (1)

Summary

We haven't generated a summary for this paper yet.