Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mass from Nothing (2405.00088v2)

Published 30 Apr 2024 in hep-ph, hep-th, and nucl-th

Abstract: We study the Abelian Higgs model with multiple scalar fields, but without mass terms. Solving the model non-perturbatively order-by-order in the number of scalar fields, we find that radiative corrections generate masses for the scalar and gauge boson, without spontaneous symmetry breaking. The mass scales are set by the $\Lambda$-parameter of the electroweak running coupling, thereby naturally avoiding the hierarchy problem. No part of our calculation employs a weak-coupling expansion, and we find that the perturbative vacuum is metastable, and hence must decay to the stable non-perturbative vacuum of the theory, which we identify. Although the field content of our Lagrangian is standard, our results predict the existence of two heavy scalar resonances in addition to the Higgs. We believe that these predicted resonances will ultimately allow experimentalists to discriminate between our method and standard solutions of the Higgs model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. François Englert, “Nobel Lecture: The BEH mechanism and its scalar boson,” Rev. Mod. Phys. 86, 843 (2014).
  2. Axel Maas, “Brout-Englert-Higgs physics: From foundations to phenomenology,” Prog. Part. Nucl. Phys. 106, 132–209 (2019), arXiv:1712.04721 [hep-ph] .
  3. S. Elitzur, “Impossibility of Spontaneously Breaking Local Symmetries,” Phys. Rev. D 12, 3978–3982 (1975).
  4. Kei-Ichi Kondo, “Gauge-independent Brout–Englert–Higgs mechanism and Yang–Mills theory with a gauge-invariant gluon mass term,” Eur. Phys. J. C 78, 577 (2018), arXiv:1804.03279 [hep-th] .
  5. Dario Buttazzo, Giuseppe Degrassi, Pier Paolo Giardino, Gian F. Giudice, Filippo Sala, Alberto Salvio,  and Alessandro Strumia, “Investigating the near-criticality of the Higgs boson,” JHEP 12, 089 (2013), arXiv:1307.3536 [hep-ph] .
  6. J. Frohlich, G. Morchio,  and F. Strocchi, “Higgs Phenomenon without symmetry breaking order parameter,” Nucl. Phys. B 190, 553–582 (1981).
  7. David Tong, “Comments on symmetric mass generation in 2d and 4d,” JHEP 07, 001 (2022), arXiv:2104.03997 [hep-th] .
  8. Nouman Butt, Simon Catterall,  and Goksu Can Toga, “Symmetric Mass Generation in Lattice Gauge Theory,” Symmetry 13, 2276 (2021), arXiv:2111.01001 [hep-lat] .
  9. Sidney R. Coleman and Erick J. Weinberg, “Radiative Corrections as the Origin of Spontaneous Symmetry Breaking,” Phys. Rev. D 7, 1888–1910 (1973).
  10. L. F. Abbott, J. S. Kang,  and Howard J. Schnitzer, “Bound States, Tachyons, and Restoration of Symmetry in the 1/N Expansion,” Phys. Rev. D 13, 2212 (1976).
  11. Andrei D. Linde, “1/n-Expansion, Vacuum Stability and Quark Confinement,” Nucl. Phys. B 125, 369–380 (1977).
  12. Paul Romatschke, “What if ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory in 4 dimensions is non-trivial in the continuum?” Phys. Lett. B 847, 138270 (2023a), arXiv:2305.05678 [hep-th] .
  13. K. Symanzik, “Renormalization Problem in Nonrenormalizable Massless phi**4 Theory,” Commun. Math. Phys. 45, 79–98 (1975).
  14. G. Parisi, “The Theory of Nonrenormalizable Interactions. 1. The Large N Expansion,” Nucl. Phys. B 100, 368–388 (1975).
  15. Carl M. Bender, Kimball A. Milton,  and Van M. Savage, “Solution of Schwinger-Dyson equations for PT symmetric quantum field theory,” Phys. Rev. D 62, 085001 (2000), arXiv:hep-th/9907045 .
  16. Michael Aizenman and Hugo Duminil-Copin, “Marginal triviality of the scaling limits of critical 4D Ising and ϕ44superscriptsubscriptitalic-ϕ44\phi_{4}^{4}italic_ϕ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT models,” Annals Math. 194, 163 (2021), arXiv:1912.07973 [math-ph] .
  17. Paul Romatschke, “A loophole in the proofs of asymptotic freedom and quantum triviality,” PoS EPS-HEP2023, 500 (2024a), arXiv:2310.18414 [hep-th] .
  18. Paolo Cea, “The Higgs condensate as a quantum liquid: A critical comparison with observations,” Int. J. Mod. Phys. A 38, 2350121 (2023), arXiv:2210.01579 [hep-ph] .
  19. Paul Romatschke, “A solvable quantum field theory with asymptotic freedom in (3+1) dimensions,” Int. J. Mod. Phys. A 38, 2350157 (2023b), arXiv:2211.15683 [hep-th] .
  20. Paul Romatschke, “Life at the Landau pole,” AppliedMath 4(1), 55–69 (2024b), arXiv:2212.03254 [hep-th] .
  21. Z. Haba, “Feynman-Kac path integral expansion around the upside-down oscillator,”  (2023), arXiv:2305.11989 [hep-th] .
  22. Jürgen Berges, Razvan Gurau,  and Thimo Preis, “Asymptotic freedom in a strongly interacting scalar quantum field theory in four Euclidean dimensions,” Phys. Rev. D 108, 016019 (2023), arXiv:2301.09514 [hep-th] .
  23. Seth Grable and Max Weiner, “A fully solvable model of fermionic interaction in 3 + 1d,” JHEP 09, 017 (2023), arXiv:2302.08603 [hep-th] .
  24. Scott Lawrence, Ryan Weller, Christian Peterson,  and Paul Romatschke, “Instantons, analytic continuation, and PT-symmetric field theory,” Phys. Rev. D 108, 085013 (2023), arXiv:2303.01470 [hep-th] .
  25. Christian Jepsen and Yaron Oz, “RG flows and fixed points of O(N)r models,” JHEP 02, 035 (2024), arXiv:2311.09039 [hep-th] .
  26. Andreas Sinner and Zeinab Rashidian, “Condensation of elastic pseudogauge fields and quantized response in the condensates,” Phys. Rev. B 108, 054501 (2023).
  27. Alessio Maiezza and Juan Carlos Vasquez, “Resurgence and self-completion in renormalized gauge theories,”  (2023), arXiv:2311.10393 [hep-th] .
  28. Ryan D. Weller, “Can negative bare couplings make sense? The ϕ→4superscript→italic-ϕ4\vec{\phi}^{4}over→ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory at large N𝑁Nitalic_N,”   (2023), arXiv:2310.02516 [hep-th] .
  29. Nadia Flodgren and Bo Sundborg, “Classifying large N limits of multiscalar theories by algebra,”  (2023), arXiv:2312.04954 [hep-th] .
  30. Syo Kamata, “Exact WKB analysis for 𝒫⁢𝒯𝒫𝒯{\cal PT}caligraphic_P caligraphic_T symmetric quantum mechanics: Study of the Ai-Bender-Sarkar conjecture,”   (2023), arXiv:2401.00574 [hep-th] .
  31. Paul Romatschke, “Negative Coupling ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT on the Lattice,”   (2023c), arXiv:2310.03815 [hep-lat] .
  32. Nahomi Kan and Kiyoshi Shiraishi, “Dynamical mass generation of spin-2 fields in de Sitter space for an O(N) symmetric model at large N,” Phys. Rev. D 108, 105022 (2023), arXiv:2305.00183 [hep-th] .
  33. Nick E. Mavromatos and Sarben Sarkar, “Chern-Simons gravity and PT Symmetry,”   (2024), arXiv:2402.14513 [hep-th] .
  34. Matej Bajec, Sašo Grozdanov,  and Alexander Soloviev, “Spectra of correlators in the relaxation time approximation of kinetic theory,”   (2024), arXiv:2403.17769 [hep-th] .
  35. Scott Lawrence, Hyunwoo Oh,  and Yukari Yamauchi, “Lattice scalar field theory at complex coupling,” Phys. Rev. D 106, 114503 (2022), arXiv:2205.12303 [hep-lat] .
  36. Paul Romatschke, “Quantum Field Theory in Large N Wonderland: Three Lectures,” in 63rd Cracow School of Theoretical Physics: Nuclear Matter at Extreme Densities and High Temperatures (2023) arXiv:2310.00048 [hep-th] .
  37. Mikko Laine and Aleksi Vuorinen, Basics of Thermal Field Theory, Vol. 925 (Springer, 2016) arXiv:1701.01554 [hep-ph] .
  38. Paul Langacker, The Standard Model and Beyond (Taylor & Francis, 2017).
  39. Duifje Maria van Egmond and Urko Reinosa, “Gauge fixing and physical symmetries,” Phys. Rev. D 108, 054029 (2023), arXiv:2304.00756 [hep-th] .
  40. R. L. Workman and Others (Particle Data Group), “Review of Particle Physics,” PTEP 2022, 083C01 (2022).
  41. Paul Romatschke, “Exact β𝛽\betaitalic_β-function of Yang-Mills theory in 2+1 dimensions,” JHEP 03, 174 (2020), arXiv:1910.09550 [hep-lat] .
  42. Ulrike Kraemmer and Anton Rebhan, “Advances in perturbative thermal field theory,” Rept. Prog. Phys. 67, 351 (2004), arXiv:hep-ph/0310337 .
  43. Paul Romatschke, “An alternative to perturbative renormalization in 3+1 dimensional field theories,”   (2024c), arXiv:2401.06847 [hep-th] .
  44. Chun-Wei Su, Ryan Weller,  and Paul Romatschke, “in preparation,”   (2024).
  45. Paul Romatschke, “Simple non-perturbative resummation schemes beyond mean-field: case study for scalar ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory in 1+1 dimensions,” JHEP 03, 149 (2019a), arXiv:1901.05483 [hep-th] .
  46. Paul Romatschke, “Finite-Temperature Conformal Field Theory Results for All Couplings: O(N) Model in 2+1 Dimensions,” Phys. Rev. Lett. 122, 231603 (2019b), [Erratum: Phys.Rev.Lett. 123, 209901 (2019)], arXiv:1904.09995 [hep-th] .
  47. Paul Romatschke, “Shear Viscosity at Infinite Coupling: A Field Theory Calculation,” Phys. Rev. Lett. 127, 111603 (2021), arXiv:2104.06435 [hep-th] .
  48. Maurizio Consoli, Leonardo Cosmai,  and Fabrizio Fabbri, “Theoretical Arguments and Experimental Signals for a Second Resonance of the Higgs Field,” Universe 9, 99 (2023).
  49. Wen-Yuan Ai, Carl M. Bender,  and Sarben Sarkar, “PT-symmetric -gφ𝜑\varphiitalic_φ4 theory,” Phys. Rev. D 106, 125016 (2022), arXiv:2209.07897 [hep-th] .
  50. Carl M. Bender and Stefan Boettcher, “Real spectra in nonHermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998), arXiv:physics/9712001 .
  51. Carl M. Bender and Daniel W. Hook, “PT-symmetric quantum mechanics,”   (2023), arXiv:2312.17386 [quant-ph] .
  52. J. Doppler et al., “Dynamically encircling an exceptional point for asymmetric mode switching,” Nature 537, 76–79 (2016).
  53. H. Xu et al., “Topological energy transfer in an optomechanical system with exceptional points,” Nature 537, 80–83 (2016).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com