Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Nematodes through Images: Datasets, Models, and Baselines of Deep Learning (2404.19748v1)

Published 30 Apr 2024 in cs.CV and cs.AI

Abstract: Every year, plant parasitic nematodes, one of the major groups of plant pathogens, cause a significant loss of crops worldwide. To mitigate crop yield losses caused by nematodes, an efficient nematode monitoring method is essential for plant and crop disease management. In other respects, efficient nematode detection contributes to medical research and drug discovery, as nematodes are model organisms. With the rapid development of computer technology, computer vision techniques provide a feasible solution for quantifying nematodes or nematode infections. In this paper, we survey and categorise the studies and available datasets on nematode detection through deep-learning models. To stimulate progress in related research, this survey presents the potential state-of-the-art object detection models, training techniques, optimisation techniques, and evaluation metrics for deep learning beginners. Moreover, seven state-of-the-art object detection models are validated on three public datasets and the AgriNema dataset for plant parasitic nematodes to construct a baseline for nematode detection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. S. Savary, L. Willocquet, S. J. Pethybridge, P. Esker, N. McRoberts, and A. Nelson, “The global burden of pathogens and pests on major food crops,” Nature ecology & evolution, vol. 3, no. 3, pp. 430–439, 2019.
  2. P. Abad, J. Gouzy, J.-M. Aury, P. Castagnone-Sereno, E. G. Danchin, E. Deleury, L. Perfus-Barbeoch, V. Anthouard, F. Artiguenave, V. C. Blok, et al., “Genome sequence of the metazoan plant-parasitic nematode meloidogyne incognita,” Nature biotechnology, vol. 26, no. 8, pp. 909–915, 2008.
  3. Z. Yuan, S. Li, R. Peng, D. Leybourne, P. Yang, and Y. Li, “Pestdss: An integrated decision support system for sustainable pest management in agriculture,” in 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE), pp. 1–6, IEEE, 2023.
  4. O. Dubois et al., The state of the world’s land and water resources for food and agriculture: managing systems at risk. Earthscan, 2011.
  5. S. Eves-van den Akker, C. J. Lilley, A. Reid, J. Pickup, E. Anderson, P. J. Cock, M. Blaxter, P. E. Urwin, J. T. Jones, and V. C. Blok, “A metagenetic approach to determine the diversity and distribution of cyst nematodes at the level of the country, the field and the individual,” Molecular Ecology, vol. 24, no. 23, pp. 5842–5851, 2015.
  6. H. Shao, P. Zhang, D. Peng, W. Huang, L.-a. Kong, C. Li, E. Liu, and H. Peng, “Current advances in the identification of plant nematode diseases: From lab assays to in-field diagnostics,” Frontiers in Plant Science, vol. 14, p. 1106784, 2023.
  7. R. Carneiro, F. S. d. O. Lima, and V. R. Correia, “Methods and tools currently used for the identification of plant parasitic nematodes,” Nematology-Concepts, Diagnosis and Control, vol. 19, 2017.
  8. A. Vega-Rúa, N. Pagès, A. Fontaine, C. Nuccio, L. Hery, D. Goindin, J. Gustave, and L. Almeras, “Improvement of mosquito identification by maldi-tof ms biotyping using protein signatures from two body parts,” Parasites & Vectors, vol. 11, pp. 1–12, 2018.
  9. M. M. Sikder, M. Vestergård, R. Sapkota, T. Kyndt, and M. Nicolaisen, “A novel metabarcoding strategy for studying nematode communities,” bioRxiv, pp. 2020–01, 2020.
  10. A. Ahuja and V. S. Somvanshi, “Diagnosis of plant-parasitic nematodes using loop-mediated isothermal amplification (lamp): A review,” Crop Protection, vol. 147, p. 105459, 2021.
  11. H. Shao, J. Jian, D. Peng, K. Yao, S. Abdulsalam, W. Huang, L. Kong, C. Li, and H. Peng, “Recombinase polymerase amplification coupled with crispr-cas12a technology for rapid and highly sensitive detection of heterodera avenae and heterodera filipjevi,” Plant Disease, vol. 107, no. 5, pp. 1365–1376, 2023.
  12. Z. Yuan, S. Li, P. Yang, and Y. Li, “Lightweight object detection model with data augmentation for tiny pest detection,” in 2022 IEEE 20th International Conference on Industrial Informatics (INDIN), pp. 233–238, IEEE, 2022.
  13. M. Bogale, A. Baniya, and P. DiGennaro, “Nematode identification techniques and recent advances,” Plants, vol. 9, no. 10, p. 1260, 2020.
  14. O. P. Kranse, I. Ko, R. Healey, U. Sonawala, S. Wei, B. Senatori, F. De Batté, J. Zhou, and S. Eves-van den Akker, “A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for arabidopsis thaliana,” Plant Methods, vol. 18, no. 1, pp. 1–12, 2022.
  15. Z. Yuan, K. Liu, S. Li, and P. Yang, “Automatic generation of visual concept-based explanations for pest recognition,” in 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), pp. 1–6, IEEE, 2023.
  16. Y. Zhang, S. Li, H. Li, R. Wang, K.-Q. Zhang, and J. Xu, “Fungi–nematode interactions: Diversity, ecology, and biocontrol prospects in agriculture,” Journal of Fungi, vol. 6, no. 4, p. 206, 2020.
  17. M. M. Abd-Elgawad, “Plant-parasitic nematodes of strawberry in egypt: a review,” Bulletin of the National Research Centre, vol. 43, pp. 1–13, 2019.
  18. M. M. Abd-Elgawad, “Biological control agents in the integrated nematode management of potato in egypt,” Egyptian Journal of Biological Pest Control, vol. 30, pp. 1–13, 2020.
  19. A. Bairwa, E. Venkatasalam, R. Sudha, R. Umamaheswari, and B. Singh, “Techniques for characterization and eradication of potato cyst nematode: a review,” Journal of Parasitic Diseases, vol. 41, no. 3, pp. 607–620, 2017.
  20. B. Qin, F. Sun, W. Shen, B. Dong, S. Ma, X. Huo, and P. Lan, “Deep learning-based pine nematode trees’ identification using multispectral and visible uav imagery,” Drones, vol. 7, no. 3, p. 183, 2023.
  21. X. Qing, Y. Wang, X. Lu, H. Li, X. Wang, H. Li, and X. Xie, “Nemarec: A deep learning-based web application for nematode image identification and ecological indices calculation,” European Journal of Soil Biology, vol. 110, p. 103408, 2022.
  22. Y. Zhu, J. Zhuang, J. Xiao, K. Song, L. Lv, and S. Lao, “An algorithm based on attention mask for fine-grained object detection,” in 2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication (CTISC), pp. 324–327, IEEE, 2021.
  23. X. Lu, S. Fung, Y. Wang, W. Ouyang, X. Qing, and H. Li, “I-nema: A large-scale microscopic image dataset for nematode recognition,” Available at SSRN 4213402.
  24. N. H. Shabrina, S. Indarti, R. A. Lika, and R. Maharani, “A comparative analysis of convolutional neural networks approaches for phytoparasitic nematode identification,” Commun. Math. Biol. Neurosci., vol. 2023, pp. Article–ID, 2023.
  25. S. Fudickar, E. J. Nustede, E. Dreyer, and J. Bornhorst, “Mask r-cnn based c. elegans detection with a diy microscope,” Biosensors, vol. 11, no. 8, p. 257, 2021.
  26. C. Wang, S. Sun, C. Zhao, Z. Mao, H. Wu, and G. Teng, “A detection model for cucumber root-knot nematodes based on modified yolov5-cms,” Agronomy, vol. 12, no. 10, p. 2555, 2022.
  27. J. Zhang, P. Ma, T. Jiang, X. Zhao, W. Tan, J. Zhang, S. Zou, X. Huang, M. Grzegorzek, and C. Li, “Sem-rcnn: a squeeze-and-excitation-based mask region convolutional neural network for multi-class environmental microorganism detection,” Applied Sciences, vol. 12, no. 19, p. 9902, 2022.
  28. J. Jiménez-Chavarría, “Segnema: nematode segmentation strategy in digital microscopy images using deep learning and shape models,” 2019.
  29. H. Niu, T. Zhao, A. Westphal, and Y. Chen, “A low-cost proximate sensing method for early detection of nematodes in walnut using walabot and scikit-learn classification algorithms,” in Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V, vol. 11414, pp. 119–125, SPIE, 2020.
  30. L. Zhang, W. Huang, and J. Wang, “Counting of pine wood nematode based on vdnet convolutional neural network,” in 2022 4th International Conference on Robotics and Computer Vision (ICRCV), pp. 164–168, IEEE, 2022.
  31. L. Chen, M. Strauch, M. Daub, X. Jiang, M. Jansen, H.-G. Luigs, S. Schultz-Kuhlmann, S. Krüssel, and D. Merhof, “A cnn framework based on line annotations for detecting nematodes in microscopic images,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 508–512, IEEE, 2020.
  32. D. Banerjee, V. Kukreja, S. Hariharan, V. Jain, and S. Dutta, “Cnn-svm model for accurate detection of bacterial diseases in cucumber leaves,” in 2023 Third International Conference on Secure Cyber Computing and Communication (ICSCCC), pp. 7–12, IEEE, 2023.
  33. A. J. Oliveira, G. A. Assis, E. R. Faria, J. R. Souza, K. C. Vivaldini, V. Guizilini, F. Ramos, C. C. Mendes, and D. F. Wolf, “Analysis of nematodes in coffee crops at different altitudes using aerial images,” in 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5, IEEE, 2019.
  34. R. Nakasi, E. R. Aliija, and J. Nakatumba, “A poster on intestinal parasite detection in stool sample using alexnet and googlenet architectures,” in ACM SIGCAS conference on computing and sustainable societies, pp. 389–395, 2021.
  35. J.-L. Lin, W.-L. Kuo, Y.-H. Huang, T.-L. Jong, A.-L. Hsu, and W.-H. Hsu, “Using convolutional neural networks to measure the physiological age of caenorhabditis elegans,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 18, no. 6, pp. 2724–2732, 2020.
  36. T. D. Pham, “Classification of caenorhabditis elegans locomotion behaviors with eigenfeature-enhanced long short-term memory networks,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 1, pp. 206–216, 2022.
  37. S. I. Natalia Angeline, Nabila Husna Shabrina, “Faster region-based convolutional neural network for plant-parasitic and non-parasitic nematode detection,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, pp. 316–324, 2023.
  38. A. Akintayo, G. L. Tylka, A. K. Singh, B. Ganapathysubramanian, A. Singh, and S. Sarkar, “A deep learning framework to discern and count microscopic nematode eggs,” Scientific reports, vol. 8, no. 1, p. 9145, 2018.
  39. A. Abade, L. F. Porto, P. A. Ferreira, and F. de Barros Vidal, “Nemanet: A convolutional neural network model for identification of soybean nematodes,” Biosystems Engineering, vol. 213, pp. 39–62, 2022.
  40. Y. Arjoune, N. Sugunaraj, S. Peri, S. V. Nair, A. Skurdal, P. Ranganathan, and B. Johnson, “Soybean cyst nematode detection and management: a review,” Plant Methods, vol. 18, no. 1, pp. 1–39, 2022.
  41. L. Chen, M. Strauch, M. Daub, M. Jansen, H.-G. Luigs, and D. Merhof, “Instance segmentation of nematode cysts in microscopic images of soil samples,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5932–5936, IEEE, 2019.
  42. K. A. Rani and S. Gowrishankar, “Pathogen-based classification of plant diseases: A deep transfer learning approach for intelligent support systems,” IEEE Access, 2023.
  43. K. Liu, P. Yang, R. Wang, L. Jiao, T. Li, and J. Zhang, “Observer-based adaptive fuzzy finite-time attitude control for quadrotor uavs,” IEEE Transactions on Aerospace and Electronic Systems, 2023.
  44. T. B. Pun, A. Neupane, R. Koech, and K. J. Owen, “Detection and quantification of root-knot nematode (meloidogyne spp.) eggs from tomato plants using image analysis,” IEEE Access, vol. 10, pp. 123190–123204, 2022.
  45. L. Chen, M. Strauch, M. Daub, H.-G. Luigs, M. Jansen, and D. Merhof, “Learning to segment fine structures under image-level supervision with an application to nematode segmentation,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2128–2131, IEEE, 2022.
  46. V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, “Annotated high-throughput microscopy image sets for validation.,” Nature methods, vol. 9, no. 7, pp. 637–637, 2012.
  47. S. Sabban, A. Alotebi, Z. Khalifah, and T. Alafif, “SinfNet: Microorganism image classifier,” Jan. 2023.
  48. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” 2022.
  49. Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” Proceedings of the IEEE, vol. 111, no. 3, pp. 257–276, 2023.
  50. L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep learning for generic object detection: A survey,” International journal of computer vision, vol. 128, pp. 261–318, 2020.
  51. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587, 2014.
  52. R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, pp. 1440–1448, 2015.
  53. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” 2016.
  54. K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint triplets for object detection,” 2019.
  55. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” 2020.
  56. G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, K. Michael, TaoXie, J. Fang, imyhxy, Lorna, Z. Yif), C. Wong, A. V, D. Montes, Z. Wang, C. Fati, J. Nadar, Laughing, UnglvKitDe, V. Sonck, tkianai, yxNONG, P. Skalski, A. Hogan, D. Nair, M. Strobel, and M. Jain, “ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation,” Nov. 2022.
  57. Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” arXiv preprint arXiv:2107.08430, 2021.
  58. T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in context,” 2015.
  59. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets