Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The density of Gabor systems in expansible locally compact abelian groups (2404.19688v2)

Published 30 Apr 2024 in math.FA and math.CA

Abstract: We investigate the reproducing properties of Gabor systems within the context of expansible groups. These properties are established in terms of density conditions. The concept of density that we employ mirrors the well-known Beurling density defined in Euclidean space, which is made possible due to the expansive structure. Along the way, for groups with a compact open subgroup, we demonstrate that modulation spaces are continuously embedded in Wiener spaces. Utilizing this result, we derive the Bessel condition of Gabor systems. We also provide a straightforward proof of the density result for Gabor frames, utilizing a comparison theorem for coherent frames.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups. Adv. Math., 285:454–477, 2015.
  2. J. Benedetto and R. Benedetto. A wavelet theory for local fields and related groups. J. Geom. Anal., 14(3):423–456, 2004.
  3. C. Bushnell and G. Henniart. The local Langlands conjecture for GL⁢(2)GL2\rm GL(2)roman_GL ( 2 ), volume 335 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
  4. O. Christensen. An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, [Cham], second edition, 2016.
  5. Density of Gabor frames. Appl. Comput. Harmon. Anal., 7(3):292–304, 1999.
  6. A. Deitmar and S. Echterhoff. Principles of harmonic analysis. Universitext. Springer, Cham, second edition, 2014.
  7. H. Feichtinger and K. Gröchenig. A unified approach to atomic decompositions via integrable group representations. In Function spaces and applications (Lund, 1986), volume 1302 of Lecture Notes in Math., pages 52–73. Springer, Berlin, 1988.
  8. H. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal., 86(2):307–340, 1989.
  9. H. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions. II. Monatsh. Math., 108(2-3):129–148, 1989.
  10. K. Gröchenig. Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA, 2001.
  11. K. Gröchenig and C. Heil. Modulation spaces and pseudodifferential operators. Integral Equations Operator Theory, 34(4):439–457, 1999.
  12. Landau’s necessary density conditions for LCA groups. J. Funct. Anal., 255(7):1831–1850, 2008.
  13. K. Gröchenig and T. Strohmer. Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class. J. Reine Angew. Math., 613:121–146, 2007.
  14. C. Heil. History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl., 13(2):113–166, 2007.
  15. E. Hewitt and K. Ross. Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations. Die Grundlehren der mathematischen Wissenschaften, Band 115. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
  16. E. Hewitt and K. Ross. Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathematischen Wissenschaften, Band 152. Springer-Verlag, New York-Berlin, 1970.
  17. M. Jakobsen. On a (no longer) new Segal algebra: a review of the Feichtinger algebra. J. Fourier Anal. Appl., 24(6):1579–1660, 2018.
  18. H. J. Landau. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math., 117:37–52, 1967.
  19. J. Ramanathan and T. Steger. Incompleteness of sparse coherent states. Appl. Comput. Harmon. Anal., 2(2):148–153, 1995.
  20. W. Rudin. Fourier analysis on groups. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1990. Reprint of the 1962 original, A Wiley-Interscience Publication.
  21. Beurling density on expansible locally compact groups and systems of translations. J. Math. Anal. Appl., 490(2):124319, 13, 2020.
  22. T. Strohmer and R. Heath, Jr. Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal., 14(3):257–275, 2003.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com