Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PCA for Point Processes (2404.19661v1)

Published 30 Apr 2024 in stat.ME, stat.ML, math.ST, and stat.TH

Abstract: We introduce a novel statistical framework for the analysis of replicated point processes that allows for the study of point pattern variability at a population level. By treating point process realizations as random measures, we adopt a functional analysis perspective and propose a form of functional Principal Component Analysis (fPCA) for point processes. The originality of our method is to base our analysis on the cumulative mass functions of the random measures which gives us a direct and interpretable analysis. Key theoretical contributions include establishing a Karhunen-Lo`{e}ve expansion for the random measures and a Mercer Theorem for covariance measures. We establish convergence in a strong sense, and introduce the concept of principal measures, which can be seen as latent processes governing the dynamics of the observed point patterns. We propose an easy-to-implement estimation strategy of eigenelements for which parametric rates are achieved. We fully characterize the solutions of our approach to Poisson and Hawkes processes and validate our methodology via simulations and diverse applications in seismology, single-cell biology and neurosiences, demonstrating its versatility and effectiveness. Our method is implemented in the pppca R-package.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. {barticle}[author] \bauthor\bsnmBelitser, \bfnmEduard\binitsE., \bauthor\bsnmSerra, \bfnmPaulo\binitsP. and \bauthor\bparticlevan \bsnmZanten, \bfnmHarry\binitsH. (\byear2015). \btitleRate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes. \bjournalJ. Statist. Plann. Inference \bvolume166 \bpages24–35. \bdoi10.1016/j.jspi.2014.03.009 \bmrnumber3390131 \endbibitem
  2. {bbook}[author] \bauthor\bsnmBosq, \bfnmDenis\binitsD. (\byear2000). \btitleLinear Processes in Function Spaces: Theory and Applications. \bpublisherSpringer New York. \endbibitem
  3. {barticle}[author] \bauthor\bsnmBrémaud, \bfnmPierre\binitsP. and \bauthor\bsnmMassoulié, \bfnmLaurent\binitsL. (\byear1996). \btitleStability of nonlinear Hawkes processes. \bjournalAnn. Probab. \bvolume24 \bpages1563–1588. \bdoi10.1214/aop/1065725193 \bmrnumber1411506 \endbibitem
  4. {barticle}[author] \bauthor\bsnmBrémaud, \bfnmPierre\binitsP. and \bauthor\bsnmMassoulié, \bfnmLaurent\binitsL. (\byear2001). \btitleHawkes branching point processes without ancestors. \bjournalJ. Appl. Probab. \bvolume38 \bpages122–135. \bdoi10.1017/s0021900200018556 \bmrnumber1816118 \endbibitem
  5. {bunpublished}[author] \bauthor\bsnmCarrizo Vergara, \bfnmRicardo\binitsR. (\byear2022). \btitleKarhunen-Loève expansion of Random Measures. \bnotearXiv:2203.14202. \endbibitem
  6. {barticle}[author] \bauthor\bsnmChen, \bfnmShizhe\binitsS., \bauthor\bsnmWitten, \bfnmDaniela\binitsD. and \bauthor\bsnmShojaie, \bfnmAli\binitsA. (\byear2017). \btitleNearly assumptionless screening for the mutually-exciting multivariate Hawkes process. \bjournalElectron. J. Stat. \bvolume11 \bpages1207–1234. \bdoi10.1214/17-EJS1251 \bmrnumber3634334 \endbibitem
  7. {bmanual}[author] \bauthor\bsnmCheysson, \bfnmFelix\binitsF. (\byear2023). \btitlehawkesbow: Estimation of Hawkes Processes from Binned Observations \bnoteR package version 1.0.2. \endbibitem
  8. {barticle}[author] \bauthor\bsnmChiang, \bfnmWen-Hao\binitsW.-H., \bauthor\bsnmLiu, \bfnmXueying\binitsX. and \bauthor\bsnmMohler, \bfnmGeorge\binitsG. (\byear2022). \btitleHawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates. \bjournalInternational Journal of Forecasting \bvolume38 \bpages505-520. \bdoihttps://doi.org/10.1016/j.ijforecast.2021.07.001 \endbibitem
  9. {barticle}[author] \bauthor\bsnmChornoboy, \bfnmES\binitsE., \bauthor\bsnmSchramm, \bfnmLP\binitsL. and \bauthor\bsnmKarr, \bfnmAF\binitsA. (\byear1988). \btitleMaximum likelihood identification of neural point process systems. \bjournalBiological cybernetics \bvolume59 \bpages265–275. \endbibitem
  10. {barticle}[author] \bauthor\bsnmCorlay, \bfnmSylvain\binitsS. and \bauthor\bsnmPagès, \bfnmGilles\binitsG. (\byear2015). \btitleFunctional quantization-based stratified sampling methods. \bjournalMonte Carlo Methods Appl. \bvolume21 \bpages1–32. \bdoi10.1515/mcma-2014-0010 \bmrnumber3318550 \endbibitem
  11. {barticle}[author] \bauthor\bsnmCrane, \bfnmRiley\binitsR. and \bauthor\bsnmSornette, \bfnmDidier\binitsD. (\byear2008). \btitleRobust dynamic classes revealed by measuring the response function of a social system. \bjournalProceedings of the National Academy of Sciences \bvolume105 \bpages15649–15653. \endbibitem
  12. {barticle}[author] \bauthor\bsnmCunningham, \bfnmJ. P.\binitsJ. P. and \bauthor\bsnmYu, \bfnmB. M.\binitsB. M. (\byear2014). \btitleDimensionality reduction for large-scale neural recordings. \bjournalNat Neurosci \bvolume17 \bpages1500–1509. \endbibitem
  13. {barticle}[author] \bauthor\bsnmDelaigle, \bfnmA\binitsA., \bauthor\bsnmHall, \bfnmP\binitsP. and \bauthor\bsnmBathia, \bfnmN\binitsN. (\byear2012). \btitleComponentwise classification and clustering of functional data. \bjournalBiometrika \bvolume99 \bpages299–313. \endbibitem
  14. {barticle}[author] \bauthor\bsnmDonnet, \bfnmSophie\binitsS., \bauthor\bsnmRivoirard, \bfnmVincent\binitsV. and \bauthor\bsnmRousseau, \bfnmJudith\binitsJ. (\byear2020). \btitleNonparametric Bayesian estimation for multivariate Hawkes processes. \bjournalAnn. Statist. \bvolume48 \bpages2698–2727. \bdoi10.1214/19-AOS1903 \bmrnumber4152118 \endbibitem
  15. {barticle}[author] \bauthor\bsnmEmbrechts, \bfnmPaul\binitsP., \bauthor\bsnmLiniger, \bfnmThomas\binitsT. and \bauthor\bsnmLin, \bfnmLu\binitsL. (\byear2011). \btitleMultivariate Hawkes processes: an application to financial data. \bjournalJ. Appl. Probab. \bvolume48A \bpages367–378. \bdoi10.1239/jap/1318940477 \bmrnumber2865638 \endbibitem
  16. {barticle}[author] \bauthor\bsnmEscabias, \bfnmM.\binitsM., \bauthor\bsnmAguilera, \bfnmA. M.\binitsA. M. and \bauthor\bsnmValderrama, \bfnmM. J.\binitsM. J. (\byear2004). \btitlePrincipal component estimation of functional logistic regression: discussion of two different approaches. \bjournalJournal of Nonparametric Statistics \bvolume16 \bpages365–384. \bdoi10.1080/10485250310001624738 \endbibitem
  17. {barticle}[author] \bauthor\bsnmGao, \bfnmXuefeng\binitsX. and \bauthor\bsnmZhu, \bfnmLingjiong\binitsL. (\byear2018). \btitleA functional central limit theorem for stationary Hawkes processes and its application to infinite-server queues. \bjournalQueueing Systems \bvolume90. \bdoi10.1007/s11134-018-9570-5 \endbibitem
  18. {barticle}[author] \bauthor\bsnmGusto, \bfnmGaelle\binitsG. and \bauthor\bsnmSchbath, \bfnmSophie S.\binitsS. S. (\byear2005). \btitleFADO: A statistical method to detect favored or avoided distances between occurrences of motifs using the Hawkes model. \bjournalStatistical Applications in Genetics and Molecular Biology \bvolume4 \bpagesn.p. \endbibitem
  19. {barticle}[author] \bauthor\bsnmHansen, \bfnmNiels Richard\binitsN. R., \bauthor\bsnmReynaud-Bouret, \bfnmPatricia\binitsP. and \bauthor\bsnmRivoirard, \bfnmVincent\binitsV. (\byear2015). \btitleLasso and probabilistic inequalities for multivariate point processes. \bjournalBernoulli \bvolume21 \bpages83–143. \bdoi10.3150/13-BEJ562 \bmrnumber3322314 \endbibitem
  20. {barticle}[author] \bauthor\bsnmHawkes, \bfnmAlan G.\binitsA. G. (\byear1971a). \btitleSpectra of some self-exciting and mutually exciting point processes. \bjournalBiometrika \bvolume58 \bpages83–90. \bdoi10.1093/biomet/58.1.83 \bmrnumber278410 \endbibitem
  21. {barticle}[author] \bauthor\bsnmHawkes, \bfnmAlan G.\binitsA. G. (\byear1971b). \btitlePoint spectra of some mutually exciting point processes. \bjournalJ. Roy. Statist. Soc. Ser. B \bvolume33 \bpages438–443. \bmrnumber358976 \endbibitem
  22. {barticle}[author] \bauthor\bsnmHilgert, \bfnmNadine\binitsN., \bauthor\bsnmMas, \bfnmAndré\binitsA. and \bauthor\bsnmVerzelen, \bfnmNicolas\binitsN. (\byear2013). \btitleMinimax adaptive tests for the functional linear model. \bjournalThe Annals of Statistics \bvolume41 \bpages838 – 869. \bdoi10.1214/13-AOS1093 \endbibitem
  23. {bbook}[author] \bauthor\bsnmHsing, \bfnmTailen\binitsT. and \bauthor\bsnmEubank, \bfnmRandall\binitsR. (\byear2015). \btitleTheoretical foundations of functional data analysis, with an introduction to linear operators \bvolume997. \bpublisherJohn Wiley & Sons. \endbibitem
  24. {barticle}[author] \bauthor\bsnmJacques, \bfnmJulien\binitsJ. and \bauthor\bsnmPreda, \bfnmCristian\binitsC. (\byear2014). \btitleModel-based clustering for multivariate functional data. \bjournalComputational Statistics & Data Analysis \bvolume71 \bpages92-106. \endbibitem
  25. {barticle}[author] \bauthor\bsnmKolaczyk, \bfnmEric D.\binitsE. D. (\byear1999). \btitleWavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds. \bjournalStatist. Sinica \bvolume9 \bpages119–135. \bmrnumber1678884 \endbibitem
  26. {barticle}[author] \bauthor\bsnmLi, \bfnmYehua\binitsY., \bauthor\bsnmWang, \bfnmNaisyin\binitsN. and \bauthor\bsnmCarroll, \bfnmRaymond J.\binitsR. J. (\byear2013). \btitleSelecting the Number of Principal Components in Functional Data. \bjournalJournal of the American Statistical Association \bvolume108 \bpages1284–1294. \endbibitem
  27. {barticle}[author] \bauthor\bsnmMarsolier, \bfnmJustine\binitsJ., \bauthor\bsnmPrompsy, \bfnmPacôme . . .\binitsP. . . . and \bauthor\bsnmVallot, \bfnmCéline\binitsC. (\byear2022). \btitleH3K27me3 conditions chemotolerance in triple-negative breast cancer. \bjournalNature Genetics \bvolume54 \bpages459–468. \endbibitem
  28. {barticle}[author] \bauthor\bsnmOakes, \bfnmDavid\binitsD. (\byear1975). \btitleThe Markovian self-exciting process. \bjournalJ. Appl. Probability \bvolume12 \bpages69–77. \bdoi10.1017/s0021900200033106 \bmrnumber362522 \endbibitem
  29. {barticle}[author] \bauthor\bsnmOgata, \bfnmYosihiko\binitsY. (\byear1988). \btitleStatistical models for earthquake occurrences and residual analysis for point processes. \bjournalJournal of the American Statistical association \bvolume83 \bpages9–27. \endbibitem
  30. {barticle}[author] \bauthor\bsnmPanaretos, \bfnmVictor M.\binitsV. M. and \bauthor\bsnmZemel, \bfnmYoav\binitsY. (\byear2016). \btitleAmplitude and phase variation of point processes. \bjournalThe Annals of Statistics \bvolume44. \bdoi10.1214/15-aos1387 \endbibitem
  31. {barticle}[author] \bauthor\bsnmRasmussen, \bfnmJakob Gulddahl\binitsJ. G. (\byear2013). \btitleBayesian Inference for Hawkes Processes. \bjournalMethodology and Computing in Applied Probability \bvolume15 \bpages623–642. \bdoi10.1007/s11009-011-9272-5 \endbibitem
  32. {barticle}[author] \bauthor\bsnmReiss, \bfnmPhilip T\binitsP. T. and \bauthor\bsnmOgden, \bfnmR. Todd\binitsR. T. (\byear2007). \btitleFunctional Principal Component Regression and Functional Partial Least Squares. \bjournalJournal of the American Statistical Association \bvolume102 \bpages984-996. \endbibitem
  33. {barticle}[author] \bauthor\bsnmReynaud-Bouret, \bfnmPatricia\binitsP. (\byear2003). \btitleAdaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. \bjournalProbab. Theory Related Fields \bvolume126 \bpages103–153. \bdoi10.1007/s00440-003-0259-1 \bmrnumber1981635 \endbibitem
  34. {barticle}[author] \bauthor\bsnmReynaud-Bouret, \bfnmPatricia\binitsP. and \bauthor\bsnmSchbath, \bfnmSophie\binitsS. (\byear2010). \btitleAdaptive estimation for Hawkes processes; application to genome analysis. \bjournalThe Annals of Statistics \bvolume38 \bpages2781?2822. \bdoi10.1214/10-aos806 \endbibitem
  35. {barticle}[author] \bauthor\bsnmSulem, \bfnmDéborah\binitsD., \bauthor\bsnmRivoirard, \bfnmVincent\binitsV. and \bauthor\bsnmRousseau, \bfnmJudith\binitsJ. (\byear2024). \btitleBayesian estimation of nonlinear Hawkes processes. \bjournalBernoulli \bvolume30 \bpages1257–1286. \bdoi10.3150/23-bej1631 \bmrnumber4699552 \endbibitem
  36. {barticle}[author] \bauthor\bsnmWillett, \bfnmRebecca M.\binitsR. M. and \bauthor\bsnmNowak, \bfnmRobert D.\binitsR. D. (\byear2007). \btitleMultiscale Poisson intensity and density estimation. \bjournalIEEE Trans. Inform. Theory \bvolume53 \bpages3171–3187. \bdoi10.1109/TIT.2007.903139 \bmrnumber2417680 \endbibitem
  37. {barticle}[author] \bauthor\bsnmWu, \bfnmShuang\binitsS., \bauthor\bsnmMüller, \bfnmHans-Georg\binitsH.-G. and \bauthor\bsnmZhang, \bfnmZhen\binitsZ. (\byear2013). \btitleFunctional data analysis for point processes with rare events. \bjournalStatist. Sinica \bvolume23 \bpages1–23. \bmrnumber3076156 \endbibitem
  38. {barticle}[author] \bauthor\bsnmZheng, \bfnmGrace X. Y.\binitsG. X. Y., \bauthor\bsnmTerry, \bfnmJessica M. . . .\binitsJ. M. . . . and \bauthor\bsnmBielas, \bfnmJason H.\binitsJ. H. (\byear2017). \btitleMassively parallel digital transcriptional profiling of single cells. \bjournalNature Communications \bvolume8 \bpages14049. \endbibitem

Summary

We haven't generated a summary for this paper yet.