PCA for Point Processes (2404.19661v1)
Abstract: We introduce a novel statistical framework for the analysis of replicated point processes that allows for the study of point pattern variability at a population level. By treating point process realizations as random measures, we adopt a functional analysis perspective and propose a form of functional Principal Component Analysis (fPCA) for point processes. The originality of our method is to base our analysis on the cumulative mass functions of the random measures which gives us a direct and interpretable analysis. Key theoretical contributions include establishing a Karhunen-Lo`{e}ve expansion for the random measures and a Mercer Theorem for covariance measures. We establish convergence in a strong sense, and introduce the concept of principal measures, which can be seen as latent processes governing the dynamics of the observed point patterns. We propose an easy-to-implement estimation strategy of eigenelements for which parametric rates are achieved. We fully characterize the solutions of our approach to Poisson and Hawkes processes and validate our methodology via simulations and diverse applications in seismology, single-cell biology and neurosiences, demonstrating its versatility and effectiveness. Our method is implemented in the pppca R-package.
- {barticle}[author] \bauthor\bsnmBelitser, \bfnmEduard\binitsE., \bauthor\bsnmSerra, \bfnmPaulo\binitsP. and \bauthor\bparticlevan \bsnmZanten, \bfnmHarry\binitsH. (\byear2015). \btitleRate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes. \bjournalJ. Statist. Plann. Inference \bvolume166 \bpages24–35. \bdoi10.1016/j.jspi.2014.03.009 \bmrnumber3390131 \endbibitem
- {bbook}[author] \bauthor\bsnmBosq, \bfnmDenis\binitsD. (\byear2000). \btitleLinear Processes in Function Spaces: Theory and Applications. \bpublisherSpringer New York. \endbibitem
- {barticle}[author] \bauthor\bsnmBrémaud, \bfnmPierre\binitsP. and \bauthor\bsnmMassoulié, \bfnmLaurent\binitsL. (\byear1996). \btitleStability of nonlinear Hawkes processes. \bjournalAnn. Probab. \bvolume24 \bpages1563–1588. \bdoi10.1214/aop/1065725193 \bmrnumber1411506 \endbibitem
- {barticle}[author] \bauthor\bsnmBrémaud, \bfnmPierre\binitsP. and \bauthor\bsnmMassoulié, \bfnmLaurent\binitsL. (\byear2001). \btitleHawkes branching point processes without ancestors. \bjournalJ. Appl. Probab. \bvolume38 \bpages122–135. \bdoi10.1017/s0021900200018556 \bmrnumber1816118 \endbibitem
- {bunpublished}[author] \bauthor\bsnmCarrizo Vergara, \bfnmRicardo\binitsR. (\byear2022). \btitleKarhunen-Loève expansion of Random Measures. \bnotearXiv:2203.14202. \endbibitem
- {barticle}[author] \bauthor\bsnmChen, \bfnmShizhe\binitsS., \bauthor\bsnmWitten, \bfnmDaniela\binitsD. and \bauthor\bsnmShojaie, \bfnmAli\binitsA. (\byear2017). \btitleNearly assumptionless screening for the mutually-exciting multivariate Hawkes process. \bjournalElectron. J. Stat. \bvolume11 \bpages1207–1234. \bdoi10.1214/17-EJS1251 \bmrnumber3634334 \endbibitem
- {bmanual}[author] \bauthor\bsnmCheysson, \bfnmFelix\binitsF. (\byear2023). \btitlehawkesbow: Estimation of Hawkes Processes from Binned Observations \bnoteR package version 1.0.2. \endbibitem
- {barticle}[author] \bauthor\bsnmChiang, \bfnmWen-Hao\binitsW.-H., \bauthor\bsnmLiu, \bfnmXueying\binitsX. and \bauthor\bsnmMohler, \bfnmGeorge\binitsG. (\byear2022). \btitleHawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates. \bjournalInternational Journal of Forecasting \bvolume38 \bpages505-520. \bdoihttps://doi.org/10.1016/j.ijforecast.2021.07.001 \endbibitem
- {barticle}[author] \bauthor\bsnmChornoboy, \bfnmES\binitsE., \bauthor\bsnmSchramm, \bfnmLP\binitsL. and \bauthor\bsnmKarr, \bfnmAF\binitsA. (\byear1988). \btitleMaximum likelihood identification of neural point process systems. \bjournalBiological cybernetics \bvolume59 \bpages265–275. \endbibitem
- {barticle}[author] \bauthor\bsnmCorlay, \bfnmSylvain\binitsS. and \bauthor\bsnmPagès, \bfnmGilles\binitsG. (\byear2015). \btitleFunctional quantization-based stratified sampling methods. \bjournalMonte Carlo Methods Appl. \bvolume21 \bpages1–32. \bdoi10.1515/mcma-2014-0010 \bmrnumber3318550 \endbibitem
- {barticle}[author] \bauthor\bsnmCrane, \bfnmRiley\binitsR. and \bauthor\bsnmSornette, \bfnmDidier\binitsD. (\byear2008). \btitleRobust dynamic classes revealed by measuring the response function of a social system. \bjournalProceedings of the National Academy of Sciences \bvolume105 \bpages15649–15653. \endbibitem
- {barticle}[author] \bauthor\bsnmCunningham, \bfnmJ. P.\binitsJ. P. and \bauthor\bsnmYu, \bfnmB. M.\binitsB. M. (\byear2014). \btitleDimensionality reduction for large-scale neural recordings. \bjournalNat Neurosci \bvolume17 \bpages1500–1509. \endbibitem
- {barticle}[author] \bauthor\bsnmDelaigle, \bfnmA\binitsA., \bauthor\bsnmHall, \bfnmP\binitsP. and \bauthor\bsnmBathia, \bfnmN\binitsN. (\byear2012). \btitleComponentwise classification and clustering of functional data. \bjournalBiometrika \bvolume99 \bpages299–313. \endbibitem
- {barticle}[author] \bauthor\bsnmDonnet, \bfnmSophie\binitsS., \bauthor\bsnmRivoirard, \bfnmVincent\binitsV. and \bauthor\bsnmRousseau, \bfnmJudith\binitsJ. (\byear2020). \btitleNonparametric Bayesian estimation for multivariate Hawkes processes. \bjournalAnn. Statist. \bvolume48 \bpages2698–2727. \bdoi10.1214/19-AOS1903 \bmrnumber4152118 \endbibitem
- {barticle}[author] \bauthor\bsnmEmbrechts, \bfnmPaul\binitsP., \bauthor\bsnmLiniger, \bfnmThomas\binitsT. and \bauthor\bsnmLin, \bfnmLu\binitsL. (\byear2011). \btitleMultivariate Hawkes processes: an application to financial data. \bjournalJ. Appl. Probab. \bvolume48A \bpages367–378. \bdoi10.1239/jap/1318940477 \bmrnumber2865638 \endbibitem
- {barticle}[author] \bauthor\bsnmEscabias, \bfnmM.\binitsM., \bauthor\bsnmAguilera, \bfnmA. M.\binitsA. M. and \bauthor\bsnmValderrama, \bfnmM. J.\binitsM. J. (\byear2004). \btitlePrincipal component estimation of functional logistic regression: discussion of two different approaches. \bjournalJournal of Nonparametric Statistics \bvolume16 \bpages365–384. \bdoi10.1080/10485250310001624738 \endbibitem
- {barticle}[author] \bauthor\bsnmGao, \bfnmXuefeng\binitsX. and \bauthor\bsnmZhu, \bfnmLingjiong\binitsL. (\byear2018). \btitleA functional central limit theorem for stationary Hawkes processes and its application to infinite-server queues. \bjournalQueueing Systems \bvolume90. \bdoi10.1007/s11134-018-9570-5 \endbibitem
- {barticle}[author] \bauthor\bsnmGusto, \bfnmGaelle\binitsG. and \bauthor\bsnmSchbath, \bfnmSophie S.\binitsS. S. (\byear2005). \btitleFADO: A statistical method to detect favored or avoided distances between occurrences of motifs using the Hawkes model. \bjournalStatistical Applications in Genetics and Molecular Biology \bvolume4 \bpagesn.p. \endbibitem
- {barticle}[author] \bauthor\bsnmHansen, \bfnmNiels Richard\binitsN. R., \bauthor\bsnmReynaud-Bouret, \bfnmPatricia\binitsP. and \bauthor\bsnmRivoirard, \bfnmVincent\binitsV. (\byear2015). \btitleLasso and probabilistic inequalities for multivariate point processes. \bjournalBernoulli \bvolume21 \bpages83–143. \bdoi10.3150/13-BEJ562 \bmrnumber3322314 \endbibitem
- {barticle}[author] \bauthor\bsnmHawkes, \bfnmAlan G.\binitsA. G. (\byear1971a). \btitleSpectra of some self-exciting and mutually exciting point processes. \bjournalBiometrika \bvolume58 \bpages83–90. \bdoi10.1093/biomet/58.1.83 \bmrnumber278410 \endbibitem
- {barticle}[author] \bauthor\bsnmHawkes, \bfnmAlan G.\binitsA. G. (\byear1971b). \btitlePoint spectra of some mutually exciting point processes. \bjournalJ. Roy. Statist. Soc. Ser. B \bvolume33 \bpages438–443. \bmrnumber358976 \endbibitem
- {barticle}[author] \bauthor\bsnmHilgert, \bfnmNadine\binitsN., \bauthor\bsnmMas, \bfnmAndré\binitsA. and \bauthor\bsnmVerzelen, \bfnmNicolas\binitsN. (\byear2013). \btitleMinimax adaptive tests for the functional linear model. \bjournalThe Annals of Statistics \bvolume41 \bpages838 – 869. \bdoi10.1214/13-AOS1093 \endbibitem
- {bbook}[author] \bauthor\bsnmHsing, \bfnmTailen\binitsT. and \bauthor\bsnmEubank, \bfnmRandall\binitsR. (\byear2015). \btitleTheoretical foundations of functional data analysis, with an introduction to linear operators \bvolume997. \bpublisherJohn Wiley & Sons. \endbibitem
- {barticle}[author] \bauthor\bsnmJacques, \bfnmJulien\binitsJ. and \bauthor\bsnmPreda, \bfnmCristian\binitsC. (\byear2014). \btitleModel-based clustering for multivariate functional data. \bjournalComputational Statistics & Data Analysis \bvolume71 \bpages92-106. \endbibitem
- {barticle}[author] \bauthor\bsnmKolaczyk, \bfnmEric D.\binitsE. D. (\byear1999). \btitleWavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds. \bjournalStatist. Sinica \bvolume9 \bpages119–135. \bmrnumber1678884 \endbibitem
- {barticle}[author] \bauthor\bsnmLi, \bfnmYehua\binitsY., \bauthor\bsnmWang, \bfnmNaisyin\binitsN. and \bauthor\bsnmCarroll, \bfnmRaymond J.\binitsR. J. (\byear2013). \btitleSelecting the Number of Principal Components in Functional Data. \bjournalJournal of the American Statistical Association \bvolume108 \bpages1284–1294. \endbibitem
- {barticle}[author] \bauthor\bsnmMarsolier, \bfnmJustine\binitsJ., \bauthor\bsnmPrompsy, \bfnmPacôme . . .\binitsP. . . . and \bauthor\bsnmVallot, \bfnmCéline\binitsC. (\byear2022). \btitleH3K27me3 conditions chemotolerance in triple-negative breast cancer. \bjournalNature Genetics \bvolume54 \bpages459–468. \endbibitem
- {barticle}[author] \bauthor\bsnmOakes, \bfnmDavid\binitsD. (\byear1975). \btitleThe Markovian self-exciting process. \bjournalJ. Appl. Probability \bvolume12 \bpages69–77. \bdoi10.1017/s0021900200033106 \bmrnumber362522 \endbibitem
- {barticle}[author] \bauthor\bsnmOgata, \bfnmYosihiko\binitsY. (\byear1988). \btitleStatistical models for earthquake occurrences and residual analysis for point processes. \bjournalJournal of the American Statistical association \bvolume83 \bpages9–27. \endbibitem
- {barticle}[author] \bauthor\bsnmPanaretos, \bfnmVictor M.\binitsV. M. and \bauthor\bsnmZemel, \bfnmYoav\binitsY. (\byear2016). \btitleAmplitude and phase variation of point processes. \bjournalThe Annals of Statistics \bvolume44. \bdoi10.1214/15-aos1387 \endbibitem
- {barticle}[author] \bauthor\bsnmRasmussen, \bfnmJakob Gulddahl\binitsJ. G. (\byear2013). \btitleBayesian Inference for Hawkes Processes. \bjournalMethodology and Computing in Applied Probability \bvolume15 \bpages623–642. \bdoi10.1007/s11009-011-9272-5 \endbibitem
- {barticle}[author] \bauthor\bsnmReiss, \bfnmPhilip T\binitsP. T. and \bauthor\bsnmOgden, \bfnmR. Todd\binitsR. T. (\byear2007). \btitleFunctional Principal Component Regression and Functional Partial Least Squares. \bjournalJournal of the American Statistical Association \bvolume102 \bpages984-996. \endbibitem
- {barticle}[author] \bauthor\bsnmReynaud-Bouret, \bfnmPatricia\binitsP. (\byear2003). \btitleAdaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. \bjournalProbab. Theory Related Fields \bvolume126 \bpages103–153. \bdoi10.1007/s00440-003-0259-1 \bmrnumber1981635 \endbibitem
- {barticle}[author] \bauthor\bsnmReynaud-Bouret, \bfnmPatricia\binitsP. and \bauthor\bsnmSchbath, \bfnmSophie\binitsS. (\byear2010). \btitleAdaptive estimation for Hawkes processes; application to genome analysis. \bjournalThe Annals of Statistics \bvolume38 \bpages2781?2822. \bdoi10.1214/10-aos806 \endbibitem
- {barticle}[author] \bauthor\bsnmSulem, \bfnmDéborah\binitsD., \bauthor\bsnmRivoirard, \bfnmVincent\binitsV. and \bauthor\bsnmRousseau, \bfnmJudith\binitsJ. (\byear2024). \btitleBayesian estimation of nonlinear Hawkes processes. \bjournalBernoulli \bvolume30 \bpages1257–1286. \bdoi10.3150/23-bej1631 \bmrnumber4699552 \endbibitem
- {barticle}[author] \bauthor\bsnmWillett, \bfnmRebecca M.\binitsR. M. and \bauthor\bsnmNowak, \bfnmRobert D.\binitsR. D. (\byear2007). \btitleMultiscale Poisson intensity and density estimation. \bjournalIEEE Trans. Inform. Theory \bvolume53 \bpages3171–3187. \bdoi10.1109/TIT.2007.903139 \bmrnumber2417680 \endbibitem
- {barticle}[author] \bauthor\bsnmWu, \bfnmShuang\binitsS., \bauthor\bsnmMüller, \bfnmHans-Georg\binitsH.-G. and \bauthor\bsnmZhang, \bfnmZhen\binitsZ. (\byear2013). \btitleFunctional data analysis for point processes with rare events. \bjournalStatist. Sinica \bvolume23 \bpages1–23. \bmrnumber3076156 \endbibitem
- {barticle}[author] \bauthor\bsnmZheng, \bfnmGrace X. Y.\binitsG. X. Y., \bauthor\bsnmTerry, \bfnmJessica M. . . .\binitsJ. M. . . . and \bauthor\bsnmBielas, \bfnmJason H.\binitsJ. H. (\byear2017). \btitleMassively parallel digital transcriptional profiling of single cells. \bjournalNature Communications \bvolume8 \bpages14049. \endbibitem