Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Radio Resource Management Design for RSMA: Optimization of Beamforming, User Admission, and Discrete/Continuous Rates with Imperfect SIC (2404.19611v1)

Published 30 Apr 2024 in eess.SP, cs.ET, cs.IT, cs.NI, and math.IT

Abstract: This paper investigates the radio resource management (RRM) design for multiuser rate-splitting multiple access (RSMA), accounting for various characteristics of practical wireless systems, such as the use of discrete rates, the inability to serve all users, and the imperfect successive interference cancellation (SIC). Specifically, failure to consider these characteristics in RRM design may lead to inefficient use of radio resources. Therefore, we formulate the RRM of RSMA as optimization problems to maximize respectively the weighted sum rate (WSR) and weighted energy efficiency (WEE), and jointly optimize the beamforming, user admission, discrete/continuous rates, accounting for imperfect SIC, which result in nonconvex mixed-integer nonlinear programs that are challenging to solve. Despite the difficulty of the optimization problems, we develop algorithms that can find high-quality solutions. We show via simulations that carefully accounting for the aforementioned characteristics, can lead to significant gains. Precisely, by considering that transmission rates are discrete, the transmit power can be utilized more intelligently, allocating just enough power to guarantee a given discrete rate. Additionally, we reveal that user admission plays a crucial role in RSMA, enabling additional gains compared to random admission by facilitating the servicing of selected users with mutually beneficial channel characteristics. Furthermore, provisioning for possibly imperfect SIC makes RSMA more robust and reliable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. B. Clerckx, Y. Mao, E. A. Jorswieck et al., “A primer on rate-splitting multiple access: Tutorial, myths, and frequently asked questions,” IEEE J. Sel. Areas Commun., pp. 1–44, 2023.
  2. B. Clerckx, Y. Mao, R. Schober et al., “Is NOMA efficient in multi-antenna networks? A critical look at next generation multiple access techniques,” IEEE Open J. Commun. Soc., vol. 2, pp. 1310–1343, 2021.
  3. Y. Mao, B. Clerckx, and V. O. K. Li, “Rate-splitting multiple access for downlink communication systems: Bridging, generalizing, and outperforming SDMA and NOMA,” EURASIP J. Wirel. Commun. Netw., vol. 1, no. 133, May 2018.
  4. 3GPP, “Technical specification group radio access network; Study on non-orthogonal multiple access (NOMA) for NR,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.812, 12 2017, version 16.0.0.
  5. S. Shi, M. Schubert, and H. Boche, “Rate optimization for multiuser MIMO systems with linear processing,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 4020–4030, 2008.
  6. Y. Mao, O. Dizdar, B. Clerckx, R. Schober, P. Popovski, and H. V. Poor, “Rate-splitting multiple access: Fundamentals, survey, and future research trends,” IEEE Commun. Surveys Tuts., vol. 24, no. 4, pp. 2073–2126, 2022.
  7. Y. Liu, S. Zhang, X. Mu et al., “Evolution of NOMA toward next generation multiple access (NGMA) for 6G,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1037–1071, 2022.
  8. R.-J. Reifert, S. Roth, A. A. Ahmad, and A. Sezgin, “Energy efficiency in rate-splitting multiple access with mixed criticality,” in Proc. IEEE ICC Workshops, 2022, pp. 681–686.
  9. C. Xu, B. Clerckx, S. Chen, Y. Mao, and J. Zhang, “Rate-splitting multiple access for multi-antenna joint radar and communications,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1332–1347, 2021.
  10. S. Naser, L. Bariah, S. Muhaidat, M. Al-Qutayri, M. Uysal, and P. C. Sofotasios, “Interference management strategies for multiuser multicell MIMO VLC systems,” IEEE Trans. Commun., vol. 70, no. 9, pp. 6002–6019, 2022.
  11. L. F. Abanto-Leon, M. Hollick, B. Clerckx, and G. H. Sim, “Sequential parametric optimization for rate-splitting precoding in non-orthogonal unicast and multicast transmissions,” in Proc. IEEE ICC, 2022, pp. 1–7.
  12. Y. Mao, B. Clerckx, and V. O. K. Li, “Rate-splitting for multi-antenna non-orthogonal unicast and multicast transmission,” in Proc. IEEE SPAWC, June 2018, pp. 1–5.
  13. H. Fu, S. Feng, W. Tang, Z. Wei, and D. W. K. Ng, “Secrecy outage-constrained robust resource allocation design for MU-MISO RSMA systems,” in Proc. IEEE GLOBECOM Workshops, 2021, pp. 1 –7.
  14. H. Pang, F. Ji, L. Xu, Y. Liu, and M. Wen, “Resource allocation for RSMA-based coordinated direct and relay transmission,” IEEE Wireless Commun. Lett., vol. 12, no. 3, pp. 505–509, 2023.
  15. H. Fu, S. Feng, and D. W. K. Ng, “Resource allocation design for IRS-aided downlink MU-MISO RSMA systems,” in Proc. IEEE ICC Workshops, 2021, pp. 1–6.
  16. A. Rahmati, Y. Yapici, N. Rupasinghe, I. Guvenc, H. Dai, and A. Bhuyan, “Energy efficiency of RSMA and NOMA in cellular-connected mmwave UAV networks,” in Proc. IEEE ICC Workshops, 2019, pp. 1–6.
  17. F. Xing, S. He, V. C. M. Leung, and H. Yin, “Energy efficiency optimization for rate-splitting multiple access-based indoor visible light communication networks,” IEEE J. Sel. Areas Commun., vol. 40, no. 5, pp. 1706–1720, 2022.
  18. Z. Yang, M. Chen, Z. Zhang, and C. Huang, “Energy efficient semantic communication over wireless networks with rate splitting,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1484–1495, 2023.
  19. O. Dizdar, A. Kaushik, B. Clerckx, and C. Masouros, “Energy efficient dual-functional radar-communication: Rate-splitting multiple access, low-resolution DACs, and RF chain selection,” IEEE Open J. Commun. Soc., vol. 3, pp. 986–1006, 2022.
  20. Y. Mao, B. Clerckx, and V. O. K. Li, “Rate-splitting for multi-antenna non-orthogonal unicast and multicast transmission: Spectral and energy efficiency analysis,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8754–8770, December 2019.
  21. B. Matthiesen, Y. Mao, A. Dekorsy, P. Popovski, and B. Clerckx, “Globally optimal spectrum- and energy-efficient beamforming for rate splitting multiple access,” IEEE Trans. Signal Process., vol. 70, pp. 5025–5040, 2022.
  22. G. Zhou, Y. Mao, and B. Clerckx, “Rate-splitting multiple access for multi-antenna downlink communication systems: Spectral and energy efficiency tradeoff,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 4816–4828, 2022.
  23. N. Q. Hieu, D. T. Hoang, D. Niyato, and D. I. Kim, “Optimal power allocation for rate splitting communications with deep reinforcement learning,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2820–2823, 2021.
  24. Z. Yang, M. Chen, W. Saad, and M. Shikh-Bahaei, “Optimization of rate allocation and power control for rate splitting multiple access (RSMA),” IEEE Trans. Commun., vol. 69, no. 9, pp. 5988–6002, 2021.
  25. A. R. Flores and R. C. de Lamare, “Robust and adaptive power allocation techniques for rate splitting based MU-MIMO systems,” IEEE Trans. Commun., vol. 70, no. 7, pp. 4656–4670, 2022.
  26. T. Cai, J. Zhang, S. Yan, L. Meng, J. Sun, and N. Al-Dhahir, “Resource allocation for secure rate-splitting multiple access with adaptive beamforming,” in Proc. IEEE ICC Workshops, 2021, pp. 1–6.
  27. N. Q. Hieu, D. T. Hoang, D. Niyato, D. N. Nguyen, D. I. Kim, and A. Jamalipour, “Joint power allocation and rate control for rate splitting multiple access networks with covert communications,” IEEE Trans. Commun., pp. 1–14, 2023.
  28. 3GPP, “5G; NR; Physical layer procedures for data,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, 2020, version 16.2.0.
  29. G. H. Sim and J. Widmer, “Finite horizon opportunistic multicast beamforming,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1452–1465, 2017.
  30. O. Dizdar, Y. Mao, W. Han, and B. Clerckx, “Rate-splitting multiple access for downlink multi-antenna communications: Physical layer design and link-level simulations,” in Proc. IEEE PIMRC, 2020, pp. 1–6.
  31. Y. Cheng, A. Philipp, and M. Pesavento, “Dynamic rate adaptation and multiuser downlink beamforming using mixed integer conic programming,” in Proc. EUSIPCO, 2012, pp. 824–828.
  32. Y. Cheng and M. Pesavento, “Joint discrete rate adaptation and downlink beamforming using mixed integer conic programming,” IEEE Trans. Signal Process., vol. 63, no. 7, pp. 1750–1764, 2015.
  33. H.-T. Wai, Q. Li, and W.-K. Ma, “Discrete sum rate maximization for MISO interference broadcast channels: Convex approximations and efficient algorithms,” IEEE Trans. Signal Process., vol. 64, no. 16, pp. 4323–4336, 2016.
  34. S. X.-Y. Ni and A. M.-C. So, “Mixed-integer semidefinite relaxation of joint admission control and beamforming: An SOC-based outer approximation approach with provable guarantees,” in Proc. IEEE SPAWC, 2018, pp. 1–5.
  35. A. Bandi, M. R. B. Shankar, S. Chatzinotas, and B. Ottersten, “A joint solution for scheduling and precoding in multiuser MISO downlink channels,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 475–490, 2020.
  36. E. Matskani, N. D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas, “Convex approximation techniques for joint multiuser downlink beamforming and admission control,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2682–2693, 2008.
  37. R. Wang, W. Kang, G. Liu, R. Ma, and B. Li, “Admission control and power allocation for noma-based satellite multi-beam network,” IEEE Access, vol. 8, pp. 33 631–33 643, 2020.
  38. L. F. Abanto-Leon, A. Asadi, A. Garcia-Saavedra, G. H. Sim, and M. Hollick, “Radiorchestra: Proactive management of millimeter-wave self-backhauled small cells via joint optimization of beamforming, user association, rate selection, and admission control,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 153–173, 2023.
  39. X. Ou, X. Xie, H. Lu, and H. Yang, “Resource allocation in MU-MISO rate-splitting multiple access with SIC errors for URLLC services,” IEEE Trans. Commun., vol. 71, no. 1, pp. 229–243, 2023.
  40. G. Chopra, A. Chowdary, and A. Kumar, “Bounds on power and common message fractions for RSMA with imperfect SIC,” 2022.
  41. N. Mouni, A. Kumar, and P. K. Upadhyay, “Adaptive user pairing for NOMA systems with imperfect SIC,” IEEE Wireless Commun. Lett., vol. 10, no. 7, pp. 1547–1551, 2021.
  42. I. A. Mahady, E. Bedeer, S. Ikki, and H. Yanikomeroglu, “Sum-rate maximization of NOMA systems under imperfect successive interference cancellation,” IEEE Commun. Lett., vol. 23, no. 3, pp. 474–477, 2019.
  43. X. Wang, R. Chen, Y. Xu, and Q. Meng, “Low-complexity power allocation in NOMA systems with imperfect SIC for maximizing weighted sum-rate,” IEEE Access, vol. 7, pp. 94 238–94 253, 2019.
  44. H. Wang, Z. Zhang, and X. Chen, “Energy-efficient power allocation for non-orthogonal multiple access with imperfect successive interference cancellation,” in Proc. WCSP, 2017, pp. 1–6.
  45. K. K. Leung and W. Li-Chun, “Integrated link adaptation and power control to improve error and throughput performance in broadband wireless packet networks,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 619–629, 2002.
  46. A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric convex approximation method with applications to nonconvex truss topology design problems,” J. Glob. Optim., vol. 47, no. 1, pp. 29–51, 2010.
  47. C. Sun and R. Dai, “An iterative rank penalty method for nonconvex quadratically constrained quadratic programs,” SIAM J. Control Optim., vol. 57, no. 6, pp. 3749–3766, 2019.
  48. 3GPP, “Study on scenarios and requirements for next generation access technologies,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.913, 05 2017, version 14.2.0.
  49. R. Kovalchukov, D. Moltchanov, Y. Gaidamaka, and E. Bobrikova, “An accurate approximation of resource request distributions in millimeter wave 3GPP new radio systems,” in Proc. NEW2AN, O. Galinina, S. Andreev, S. Balandin, and Y. Koucheryavy, Eds.   Cham: Springer International Publishing, 2019, pp. 572–585.
  50. 3GPP, “Technical specification group radio access network; V2X services based on NR; User equipment (UE) radio transmission and reception,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.886, 2022, version 16.3.0.
  51. H. Viswanathan, S. Venkatesan, and H. Huang, “Downlink capacity evaluation of cellular networks with known-interference cancellation,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 802–811, 2003.
  52. A. Khalili, M. R. Mili, M. Rasti, S. Parsaeefard, and D. W. K. Ng, “Antenna selection strategy for energy efficiency maximization in uplink OFDMA networks: A multi-objective approach,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 595–609, 2020.
  53. P. Fernandez-Perez, C. Fiandrino, and J. Widmer, “Characterizing and modeling mobile networks user traffic at millisecond level,” in Proc. ACM WiNTECH, 2023, p. 64–71.
  54. L. Xiang, D. W. K. Ng, X. Ge, Z. Ding, V. W. S. Wong, and R. Schober, “Cache-aided non-orthogonal multiple access: The two-user case,” IEEE J. Sel. Areas Commun., vol. 13, no. 3, pp. 436–451, 2019.
  55. M. M. Sahin, O. Dizdar, B. Clerckx, and H. Arslan, “Multicarrier rate-splitting multiple access: Superiority of OFDM-RSMA over OFDMA and OFDM-NOMA,” IEEE Commun. Lett., vol. 27, no. 11, pp. 3088–3092, 2023.
  56. ——, “OFDM-RSMA: Robust transmission under inter-carrier interference,” 2023. [Online]. Available: https://arxiv.org/pdf/2310.01686.pdf
  57. 3GPP, “5G; NR; Physical channels and modulation,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, June 2022, version 17.2.0.
  58. ——, “Universal Mobile Telecommunications System (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Architecture and functional description,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 23.246, April 2022, version 17.0.0.
  59. G. P. McCormick, “Computability of global solutions to factorable nonconvex programs: Part I – Convex underestimating problems,” Math. Program., vol. 10, no. 1, p. 147–175, 1976.
  60. L.-N. Tran, M. F. Hanif, A. Tolli, and M. Juntti, “Fast converging algorithm for weighted sum rate maximization in multicell MISO downlink,” IEEE Signal Process. Lett., vol. 19, no. 12, pp. 872–875, 2012.
  61. F. Alavi, K. Cumanan, Z. Ding, and A. G. Burr, “Robust beamforming techniques for non-orthogonal multiple access systems with bounded channel uncertainties,” IEEE Commun. Lett., vol. 21, no. 9, pp. 2033–2036, 2017.
  62. H. Fu, S. Feng, W. Tang, and D. W. K. Ng, “Robust secure beamforming design for two-user downlink MISO rate-splitting systems,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 8351–8365, 2020.
  63. D. Xu, X. Yu, Y. Sun, D. W. K. Ng, and R. Schober, “Resource allocation for IRS-assisted full-duplex cognitive radio systems,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7376–7394, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com