Topological Insulators with Hybrid-order Boundary States (2404.19469v3)
Abstract: We report the discovery of several classes of novel topological insulators (TIs) with hybrid-order boundary states generated from the first-order TIs with additional crystalline symmetries. Unlike the current studies on hybrid-order TIs where different-order topology arises from merging different-order TIs in various energy, {\color{red} these novel TIs exhibit unique properties, featuring a remarkable coexistence of first-order gapless modes and higher-order Fermi arc states}, behaving as a hybrid between the first-order TIs and higher-order topological semimetals within a single bulk gap. Our findings establish a profound connection between these novel $d$-dimensional ($d$D) TIs and ($d-1$)D higher-order TIs (HOTIs), which can be understood as a result of stacking $(d-1)$D HOTIs to $d$D with $d=3,4$, revealing unconventional topological phase transitions by closing the gap in certain first-order boundaries rather than the bulk. The bulk-boundary correspondence between these higher-order Fermi-arcs and bulk topological invariants associated with additional crystalline symmetries is also demonstrated. We then address the conventional topological phase transitions from these novel TIs to nodal-line/nodal-surface semimetal phases, where the gapless phases host new kinds of topological responses. Meanwhile, we present the corresponding topological semimetal phases by stacking these unique TIs. Finally, we discuss potential ways to realize these novel phases in synthetic and real materials, with a particular focus on the feasible implementation in optical lattices using ultracold atoms.
- M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
- X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
- Y. Xu, Frontiers of Physics 14, 43402 (2019).
- M. F. Atiyah, The Quarterly Journal of Mathematics 17, 367 (1966).
- A. Kitaev, AIP Conf. Proc. 1134, 22–30 (2009).
- P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).
- Y. X. Zhao and Z. D. Wang, Phys. Rev. Lett. 110, 240404 (2013).
- Y. X. Zhao and Z. D. Wang, Phys. Rev. B 89, 075111 (2014).
- L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
- Direct calculation for ℋ0subscriptℋ0\mathcal{H}_{0}caligraphic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT shows that C2=−sign(M)subscript𝐶2sign𝑀C_{2}=-\text{sign}(M)italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = - sign ( italic_M ) for 2<|M|<42𝑀42<|M|<42 < | italic_M | < 4 and C2=3sign(M)subscript𝐶23sign𝑀C_{2}=3\text{sign}(M)italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 3 sign ( italic_M ) for 0<|M|<20𝑀20<|M|<20 < | italic_M | < 2, and C2=0subscript𝐶20C_{2}=0italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 elsewhere .
- See supplemental materials for details .
- The inversion symmetry acts on the Hamiltonian as ℐ^ℋ0(𝒌)ℐ^−1=ℋ0(−𝒌)^ℐsubscriptℋ0𝒌superscript^ℐ1subscriptℋ0𝒌\hat{\mathcal{I}}\mathcal{H}_{0}(\bm{k})\hat{\mathcal{I}}^{-1}=\mathcal{H}_{0}% (-\bm{k})over^ start_ARG caligraphic_I end_ARG caligraphic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( bold_italic_k ) over^ start_ARG caligraphic_I end_ARG start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = caligraphic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - bold_italic_k ) with the represented operator ℐ^=Γ0^ℐsubscriptΓ0\hat{\mathcal{I}}=\Gamma_{0}over^ start_ARG caligraphic_I end_ARG = roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .
- When the system hosts Γ~5subscript~Γ5\tilde{\Gamma}_{5}over~ start_ARG roman_Γ end_ARG start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT symmetry, we can define a ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT number through the spin SCN as ν2=C2smod2subscript𝜈2subscript𝐶2𝑠mod2\nu_{2}=C_{2s}~{}\text{mod}~{}2italic_ν start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_C start_POSTSUBSCRIPT 2 italic_s end_POSTSUBSCRIPT mod 2 with C2s=(C2+−C2−)/2subscript𝐶2𝑠superscriptsubscript𝐶2superscriptsubscript𝐶22C_{2s}=(C_{2}^{+}-C_{2}^{-})/2italic_C start_POSTSUBSCRIPT 2 italic_s end_POSTSUBSCRIPT = ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT - italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) / 2 where C2±superscriptsubscript𝐶2plus-or-minusC_{2}^{\pm}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT is the SCN for each 4×4444\times 44 × 4 block HamiltonianZhu et al. (2022) .
- L. B. Shao and Y. X. Zhao, (2018), 10.48550/ARXIV.1805.07323, arXiv:1805.07323 .
- The representative operator of ℳ(x+z)ywsubscriptℳ𝑥𝑧𝑦𝑤\mathcal{M}_{(x+z)yw}caligraphic_M start_POSTSUBSCRIPT ( italic_x + italic_z ) italic_y italic_w end_POSTSUBSCRIPT is given by ℳ^(z+x)yw=ℳ^z+xℳ^yℳ^w=12(G223−G221)subscript^ℳ𝑧𝑥𝑦𝑤subscript^ℳ𝑧𝑥subscript^ℳ𝑦subscript^ℳ𝑤12subscript𝐺223subscript𝐺221\hat{\mathcal{M}}_{(z+x)yw}=\hat{\mathcal{M}}_{z+x}\hat{\mathcal{M}}_{y}\hat{% \mathcal{M}}_{w}=\frac{1}{\sqrt{2}}(G_{223}-G_{221})over^ start_ARG caligraphic_M end_ARG start_POSTSUBSCRIPT ( italic_z + italic_x ) italic_y italic_w end_POSTSUBSCRIPT = over^ start_ARG caligraphic_M end_ARG start_POSTSUBSCRIPT italic_z + italic_x end_POSTSUBSCRIPT over^ start_ARG caligraphic_M end_ARG start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT over^ start_ARG caligraphic_M end_ARG start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ( italic_G start_POSTSUBSCRIPT 223 end_POSTSUBSCRIPT - italic_G start_POSTSUBSCRIPT 221 end_POSTSUBSCRIPT ) with (ℳ^(z+x)yw)2=+1superscriptsubscript^ℳ𝑧𝑥𝑦𝑤21(\hat{\mathcal{M}}_{(z+x)yw})^{2}=+1( over^ start_ARG caligraphic_M end_ARG start_POSTSUBSCRIPT ( italic_z + italic_x ) italic_y italic_w end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = + 1 .
- S. T. Ramamurthy and T. L. Hughes, Phys. Rev. B 95, 075138 (2017).
- S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
- N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014).