Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Espresso: Robust Concept Filtering in Text-to-Image Models (2404.19227v6)

Published 30 Apr 2024 in cs.CV and cs.CR

Abstract: Diffusion based text-to-image models are trained on large datasets scraped from the Internet, potentially containing unacceptable concepts (e.g., copyright-infringing or unsafe). We need concept removal techniques (CRTs) which are i) effective in preventing the generation of images with unacceptable concepts, ii) utility-preserving on acceptable concepts, and, iii) robust against evasion with adversarial prompts. No prior CRT satisfies all these requirements simultaneously. We introduce Espresso, the first robust concept filter based on Contrastive Language-Image Pre-Training (CLIP). We identify unacceptable concepts by using the distance between the embedding of a generated image to the text embeddings of both unacceptable and acceptable concepts. This lets us fine-tune for robustness by separating the text embeddings of unacceptable and acceptable concepts while preserving utility. We present a pipeline to evaluate various CRTs to show that Espresso is more effective and robust than prior CRTs, while retaining utility.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Anudeep Das (3 papers)
  2. Vasisht Duddu (21 papers)
  3. Rui Zhang (1138 papers)
  4. N. Asokan (78 papers)
Citations (3)