Papers
Topics
Authors
Recent
Search
2000 character limit reached

Character Sheaves on Reductive Lie Algebras in Positive Characteristic

Published 30 Apr 2024 in math.RT and math.AG | (2404.19210v2)

Abstract: We prove a microlocal characterisation of character sheaves on a reductive Lie algebra over an algebraically closed field of sufficiently large positive characteristic: a perverse irreducible G-equivariant sheaf is a character sheaf if and only if it has nilpotent singular support and is quasi-admissible. We also present geometric proofs, in positive characteristic, of the equivalence between being admissible and being a character sheaf, and various characterisations of cuspidal sheaves, following the work of Mirkovi\'c.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We're still in the process of identifying open problems mentioned in this paper. Please check back in a few minutes.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.