2000 character limit reached
Asymptotically Compatible Fractional Grönwall Inequality and its Applications (2404.19170v1)
Published 30 Apr 2024 in math.NA and cs.NA
Abstract: In this work, we will give proper estimates for the discrete convolution complementary (DCC) kernels, which leads to the asymptotically compatible fractional Gr\"onwall inequality. The consequence can be applied in the analysis of the stability and pointwise-in-time error of difference-type schemes on a non-uniform mesh. The pointwise error is explicitly bound when a non-uniform time grid is given by a specific scale function e.g. graded mesh, can be given directly. Numerical experiments towards the conclusion of this work validate the error analysis.
- SIAM Journal on Numerical Analysis 57(3), 1524–1544 (2019). DOI 10.1137/18m1189750
- Alikhanov, A.A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differential Equations 46(5), 660–666 (2010). DOI 10.1134/s0012266110050058
- Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics (2002). DOI 10.1137/1.9780898719208. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898719208
- Clark, D.S.: Short proof of a discrete gronwall inequality. Discrete Applied Mathematics 16(3), 279–281 (1987). DOI 10.1016/0166-218x(87)90064-3
- Computational Methods in Applied Mathematics 18(1), 33–42 (2017). DOI 10.1515/cmam-2017-0019
- Computer Methods in Applied Mechanics and Engineering 346, 332–358 (2019). DOI 10.1016/j.cma.2018.12.011
- SIAM Journal on Numerical Analysis 56(1), 1–23 (2018). DOI 10.1137/16m1089320
- DOI 10.1051/m2an/2016017
- Springer International Publishing (2023). DOI 10.1007/978-3-031-21050-1
- Kopteva, N.: Error Analysis of the L1 Method on Graded and Uniform Meshes for a Fractional-Derivative Problem in Two and Three Dimensions. Mathematics of Computation 88(319), 2135–2155 (2019). DOI 10.1090/mcom/3410
- Kopteva, N.: Error analysis for time-fractional semilinear parabolic equations using upper and lower solutions. SIAM Journal on Numerical Analysis 58(4), 2212–2234 (2020). DOI 10.1137/20m1313015
- Kopteva, N.: Error analysis of an l2-type method on graded meshes for a fractional-order parabolic problem. Mathematics of Computation 90(327), 19–40 (2020). DOI 10.1090/mcom/3552
- SIAM Journal on Numerical Analysis 58(2), 1217–1238 (2020). DOI 10.1137/19M1300686
- Journal of Computational Mathematics 42(3), 662–678 (2024). DOI 10.4208/jcm.2205-m2021-0316
- SIAM Journal on Numerical Analysis 56(2), 1112–1133 (2018). DOI 10.1137/17m1131829
- Communications in Computational Physics 30(2), 567–601 (2021). DOI 10.4208/cicp.oa-2020-0124
- SIAM Journal on Numerical Analysis 57(1), 218–237 (2019). DOI 10.1137/16m1175742
- Journal of Scientific Computing 80(1), 1–25 (2019). DOI 10.1007/s10915-019-00927-0
- Lubich, C.: Discretized Fractional Calculus. SIAM Journal on Mathematical Analysis 17(3), 704–719 (1986). DOI 10.1137/0517050
- Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numerische Mathematik 52(2), 129–145 (1988). DOI 10.1007/BF01398686
- Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numerische Mathematik 52(4), 413–425 (1988). DOI 10.1007/BF01462237
- Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-540-71041-7
- SIAM Journal on Numerical Analysis 55(2), 1057–1079 (2017). DOI 10.1137/16m1082329
- Communications in Nonlinear Science and Numerical Simulation 117, 106923 (2023). DOI 10.1016/j.cnsns.2022.106923
- Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer New York (1995). DOI 10.1007/978-1-4899-7278-1
- Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Berlin Heidelberg (2006). DOI 10.1007/3-540-33122-0
- Trefethen, L.N.: Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics (2000). DOI 10.1137/1.9780898719598. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898719598
- Journal of Computational Physics 467, 111467 (2022). DOI 10.1016/j.jcp.2022.111467
- Fractional Calculus and Applied Analysis 25(2), 453–487 (2022). DOI 10.1007/s13540-022-00022-6