Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotically Compatible Fractional Grönwall Inequality and its Applications (2404.19170v1)

Published 30 Apr 2024 in math.NA and cs.NA

Abstract: In this work, we will give proper estimates for the discrete convolution complementary (DCC) kernels, which leads to the asymptotically compatible fractional Gr\"onwall inequality. The consequence can be applied in the analysis of the stability and pointwise-in-time error of difference-type schemes on a non-uniform mesh. The pointwise error is explicitly bound when a non-uniform time grid is given by a specific scale function e.g. graded mesh, can be given directly. Numerical experiments towards the conclusion of this work validate the error analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. SIAM Journal on Numerical Analysis 57(3), 1524–1544 (2019). DOI 10.1137/18m1189750
  2. Alikhanov, A.A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differential Equations 46(5), 660–666 (2010). DOI 10.1134/s0012266110050058
  3. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics (2002). DOI 10.1137/1.9780898719208. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898719208
  4. Clark, D.S.: Short proof of a discrete gronwall inequality. Discrete Applied Mathematics 16(3), 279–281 (1987). DOI 10.1016/0166-218x(87)90064-3
  5. Computational Methods in Applied Mathematics 18(1), 33–42 (2017). DOI 10.1515/cmam-2017-0019
  6. Computer Methods in Applied Mechanics and Engineering 346, 332–358 (2019). DOI 10.1016/j.cma.2018.12.011
  7. SIAM Journal on Numerical Analysis 56(1), 1–23 (2018). DOI 10.1137/16m1089320
  8. DOI 10.1051/m2an/2016017
  9. Springer International Publishing (2023). DOI 10.1007/978-3-031-21050-1
  10. Kopteva, N.: Error Analysis of the L1 Method on Graded and Uniform Meshes for a Fractional-Derivative Problem in Two and Three Dimensions. Mathematics of Computation 88(319), 2135–2155 (2019). DOI 10.1090/mcom/3410
  11. Kopteva, N.: Error analysis for time-fractional semilinear parabolic equations using upper and lower solutions. SIAM Journal on Numerical Analysis 58(4), 2212–2234 (2020). DOI 10.1137/20m1313015
  12. Kopteva, N.: Error analysis of an l2-type method on graded meshes for a fractional-order parabolic problem. Mathematics of Computation 90(327), 19–40 (2020). DOI 10.1090/mcom/3552
  13. SIAM Journal on Numerical Analysis 58(2), 1217–1238 (2020). DOI 10.1137/19M1300686
  14. Journal of Computational Mathematics 42(3), 662–678 (2024). DOI 10.4208/jcm.2205-m2021-0316
  15. SIAM Journal on Numerical Analysis 56(2), 1112–1133 (2018). DOI 10.1137/17m1131829
  16. Communications in Computational Physics 30(2), 567–601 (2021). DOI 10.4208/cicp.oa-2020-0124
  17. SIAM Journal on Numerical Analysis 57(1), 218–237 (2019). DOI 10.1137/16m1175742
  18. Journal of Scientific Computing 80(1), 1–25 (2019). DOI 10.1007/s10915-019-00927-0
  19. Lubich, C.: Discretized Fractional Calculus. SIAM Journal on Mathematical Analysis 17(3), 704–719 (1986). DOI 10.1137/0517050
  20. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numerische Mathematik 52(2), 129–145 (1988). DOI 10.1007/BF01398686
  21. Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numerische Mathematik 52(4), 413–425 (1988). DOI 10.1007/BF01462237
  22. Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-540-71041-7
  23. SIAM Journal on Numerical Analysis 55(2), 1057–1079 (2017). DOI 10.1137/16m1082329
  24. Communications in Nonlinear Science and Numerical Simulation 117, 106923 (2023). DOI 10.1016/j.cnsns.2022.106923
  25. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer New York (1995). DOI 10.1007/978-1-4899-7278-1
  26. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Berlin Heidelberg (2006). DOI 10.1007/3-540-33122-0
  27. Trefethen, L.N.: Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics (2000). DOI 10.1137/1.9780898719598. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898719598
  28. Journal of Computational Physics 467, 111467 (2022). DOI 10.1016/j.jcp.2022.111467
  29. Fractional Calculus and Applied Analysis 25(2), 453–487 (2022). DOI 10.1007/s13540-022-00022-6

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com