2000 character limit reached
Boundedness of the p-primary torsion of the Brauer group of products of varieties (2404.19150v2)
Published 29 Apr 2024 in math.AG and math.NT
Abstract: Let k be a field finitely generated over its prime subfield. We prove that the quotient of the Brauer group of a product of varieties over k by the Brauer groups of factors has finite exponent. The bulk of the proof concerns p-primary torsion in characteristic p. Our approach gives a more direct proof of the boundedness of the p-primary torsion of the Brauer group of an abelian variety, as recently proved by D'Addezio. We show that the transcendental Brauer group of a Kummer surface over k has finite exponent, but can be infinite when k is an infinite field of positive characteristic. This answers a question of Zarhin and the author.
- D. Bragg and M. Olsson. Representability of cohomology of finite flat abelian group schemes. arXiv:2107.11492
- Y. Cao. Sous-groupe de Brauer invariant et obstruction de descente itérée. Algebra Number Theory 14 (2020) 2151–2183. Correction: Algebra Number Theory 17 (2023) 261–266.
- J.-L. Colliot-Thélène et J.-J. Sansuc. La descente sur les variétés rationnelles, II. Duke Math. J. 54 (1987) 375–492.
- B. Conrad. Chow’s K/k𝐾𝑘K/kitalic_K / italic_k-image and K/k𝐾𝑘K/kitalic_K / italic_k-trace, and the Lang–Néron theorem. Enseign. Math. 52 (2006) 37–108.
- M. D’Addezio. Boundedness of the p𝑝pitalic_p-primary torsion of the Brauer group of an abelian variety. Compos. Math. 160 (2024) 463–480.
- A.J. de Jong. Homomorphisms of Barsotti–Tate groups and crystals in positive characteristic. Invent. Math. 134 (1998) 301–333.
- D. Gvirtz and A.N. Skorobogatov. Cohomology and the Brauer groups of diagonal surfaces. Duke Math. J. 171 (2022) 1299–1347.
- L. Illusie. Complexe de de Rham–Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4) 12 (1979) 501–661.
- L. Illusie et M. Raynaud. Les suites spectrales associées au complexe de de Rham–Witt. Inst. Hautes Études Sci. Publ. Math. 57 (1983) 73–212.
- K. Ito. Finiteness of Brauer groups of K3 surfaces in characteristic 2. Int. J. Number Theory 14 (2018) 1813–1825.
- J.S. Milne. Étale cohomology. Princeton University Press, 1980.
- D. Mumford. Abelian varieties. 2nd edition. Oxford University Press, 1974.
- T. Oda. The first de Rham cohomology group and Dieudonné modules. Ann. Sci. E.N.S. 4e série 2 (1969) 63–135.
- A.N. Skorobogatov and Yu.G. Zarhin. A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces. J. Alg. Geom. 17 (2008) 481–502.
- A.N. Skorobogatov and Yu.G. Zarhin. The Brauer group of Kummer surfaces and torsion of elliptic curves. J. reine angew. Math. 666 (2012) 115–140.
- A.N. Skorobogatov and Yu.G. Zarhin. The Brauer group and the Brauer–Manin set of products of varieties. J. Eur. Math. Soc. 16 (2014) 749–768. Corrigendum. J. Eur. Math. Soc. 25 (2023) 2919–2925.
- A.N. Skorobogatov and Yu.G. Zarhin. A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic. Int. Math. Res. Not. IMRN (2015) 11404–11418.
- The stacks project. https://stacks.math.columbia.edu/
- Y. Yang. Remarks on p𝑝pitalic_p-primary torsion of the Brauer group. (In preparation.)