Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness of the p-primary torsion of the Brauer group of products of varieties (2404.19150v2)

Published 29 Apr 2024 in math.AG and math.NT

Abstract: Let k be a field finitely generated over its prime subfield. We prove that the quotient of the Brauer group of a product of varieties over k by the Brauer groups of factors has finite exponent. The bulk of the proof concerns p-primary torsion in characteristic p. Our approach gives a more direct proof of the boundedness of the p-primary torsion of the Brauer group of an abelian variety, as recently proved by D'Addezio. We show that the transcendental Brauer group of a Kummer surface over k has finite exponent, but can be infinite when k is an infinite field of positive characteristic. This answers a question of Zarhin and the author.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. D. Bragg and M. Olsson. Representability of cohomology of finite flat abelian group schemes. arXiv:2107.11492
  2. Y. Cao. Sous-groupe de Brauer invariant et obstruction de descente itérée. Algebra Number Theory 14 (2020) 2151–2183. Correction: Algebra Number Theory 17 (2023) 261–266.
  3. J.-L. Colliot-Thélène et J.-J. Sansuc. La descente sur les variétés rationnelles, II. Duke Math. J. 54 (1987) 375–492.
  4. B. Conrad. Chow’s K/k𝐾𝑘K/kitalic_K / italic_k-image and K/k𝐾𝑘K/kitalic_K / italic_k-trace, and the Lang–Néron theorem. Enseign. Math. 52 (2006) 37–108.
  5. M. D’Addezio. Boundedness of the p𝑝pitalic_p-primary torsion of the Brauer group of an abelian variety. Compos. Math. 160 (2024) 463–480.
  6. A.J. de Jong. Homomorphisms of Barsotti–Tate groups and crystals in positive characteristic. Invent. Math. 134 (1998) 301–333.
  7. D. Gvirtz and A.N. Skorobogatov. Cohomology and the Brauer groups of diagonal surfaces. Duke Math. J. 171 (2022) 1299–1347.
  8. L. Illusie. Complexe de de Rham–Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4) 12 (1979) 501–661.
  9. L. Illusie et M. Raynaud. Les suites spectrales associées au complexe de de Rham–Witt. Inst. Hautes Études Sci. Publ. Math. 57 (1983) 73–212.
  10. K. Ito. Finiteness of Brauer groups of K3 surfaces in characteristic 2. Int. J. Number Theory 14 (2018) 1813–1825.
  11. J.S. Milne. Étale cohomology. Princeton University Press, 1980.
  12. D. Mumford. Abelian varieties. 2nd edition. Oxford University Press, 1974.
  13. T. Oda. The first de Rham cohomology group and Dieudonné modules. Ann. Sci. E.N.S. 4e série 2 (1969) 63–135.
  14. A.N. Skorobogatov and Yu.G. Zarhin. A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces. J. Alg. Geom. 17 (2008) 481–502.
  15. A.N. Skorobogatov and Yu.G. Zarhin. The Brauer group of Kummer surfaces and torsion of elliptic curves. J. reine angew. Math. 666 (2012) 115–140.
  16. A.N. Skorobogatov and Yu.G. Zarhin. The Brauer group and the Brauer–Manin set of products of varieties. J. Eur. Math. Soc. 16 (2014) 749–768. Corrigendum. J. Eur. Math. Soc. 25 (2023) 2919–2925.
  17. A.N. Skorobogatov and Yu.G. Zarhin. A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic. Int. Math. Res. Not. IMRN (2015) 11404–11418.
  18. The stacks project. https://stacks.math.columbia.edu/
  19. Y. Yang. Remarks on p𝑝pitalic_p-primary torsion of the Brauer group. (In preparation.)
Citations (3)

Summary

We haven't generated a summary for this paper yet.