Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-planar integrated correlator in $\mathcal{N}=4$ SYM (2404.18900v1)

Published 29 Apr 2024 in hep-th

Abstract: Integrated correlator of four superconformal stress-tensor primaries in $SU(N)$ $\mathcal{N}=4$ super Yang-Mills (SYM) theory in the perturbative limit takes a remarkably simple form, where the $L$-loop coefficient is given by a rational multiple of $\zeta(2L+1)$. In this letter, we extend the previous analysis of expressing the perturbative integrated correlator as a linear combination of periods of $f$-graphs, graphical representations for loop integrands, to the non-planar sector at four loops. At this loop order, multiple zeta values make their first appearance when evaluating periods of non-planar $f$-graphs, but cancel non-trivially in the weighted sum. The remaining single zeta value, along with the rational number prefactor, makes a perfect agreement with the prediction from supersymmmetric localisation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. S. M. Chester, JHEP 04, 193 (2020), arXiv:1908.05247 [hep-th] .
  2. S. M. Chester and S. S. Pufu, JHEP 01, 103 (2021), arXiv:2003.08412 [hep-th] .
  3. C. Wen and S.-Q. Zhang, JHEP 05, 126 (2022), arXiv:2203.01890 [hep-th] .
  4. T. Fleury and R. Pereira, JHEP 03, 003 (2020), arXiv:1910.09428 [hep-th] .
  5. The same integrand has also been applied to determine the full four-loop cusp anomalous dimension in SYM Henn et al. (2020).
  6. O. Schnetz, HyperlogProcedures, https://www.math.fau.de/person/oliver-schnetz/.
  7. P. Heslop, J. Phys. A 55, 443009 (2022), arXiv:2203.13019 [hep-th] .
  8. M. Nirschl and H. Osborn, Nucl. Phys. B 711, 409 (2005), arXiv:hep-th/0407060 .
  9. D. J. Broadhurst and D. Kreimer, Int. J. Mod. Phys. C 6, 519 (1995), arXiv:hep-ph/9504352 .
  10. O. Schnetz, Commun. Num. Theor. Phys. 4, 1 (2010), arXiv:0801.2856 [hep-th] .
  11. F. C. S. Brown,   (2009), arXiv:0910.0114 [math.AG] .
  12. O. Schnetz, Commun. Num. Theor. Phys. 08, 589 (2014), arXiv:1302.6445 [math.NT] .
  13. E. Panzer and O. Schnetz, Commun. Num. Theor. Phys. 11, 657 (2017), arXiv:1603.04289 [hep-th] .
  14. E. Panzer, Comput. Phys. Commun. 188, 148 (2015), arXiv:1403.3385 [hep-th] .
  15. M. Borinsky,   (2020), arXiv:2008.12310 [math-ph] .
  16. Note the typos in (5.21) of Eden et al. (2012b), where the first two entries of all aksubscript𝑎𝑘a_{k}italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT therein should have been swapped.
  17. S. Caron-Huot and F. Coronado,   (2021), arXiv:2106.03892 [hep-th] .
  18. A. Pini and P. Vallarino,   (2024), arXiv:2404.03466 [hep-th] .
  19. F. Brown, “Feynman amplitudes and cosmic galois group,”  (2017), arXiv:1512.06409 [math-ph] .
  20. O. Gürdoğan, Phys. Rev. D 103, L081703 (2021), arXiv:2011.04781 [hep-th] .

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com