Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Dynamics Modeling of Miniature Robotic Blimps Using Neural ODEs With Parameter Auto-Tuning (2404.18580v2)

Published 29 Apr 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Miniature robotic blimps, as one type of lighter-than-air aerial vehicles, have attracted increasing attention in the science and engineering community for their enhanced safety, extended endurance, and quieter operation compared to quadrotors. Accurately modeling the dynamics of these robotic blimps poses a significant challenge due to the complex aerodynamics stemming from their large lifting bodies. Traditional first-principle models have difficulty obtaining accurate aerodynamic parameters and often overlook high-order nonlinearities, thus coming to its limit in modeling the motion dynamics of miniature robotic blimps. To tackle this challenge, this letter proposes the Auto-tuning Blimp-oriented Neural Ordinary Differential Equation method (ABNODE), a data-driven approach that integrates first-principle and neural network modeling. Spiraling motion experiments of robotic blimps are conducted, comparing the ABNODE with first-principle and other data-driven benchmark models, the results of which demonstrate the effectiveness of the proposed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Y. Zhang, J. Yan, X. Fan, S. Wang, X. Wang, W. Huang, and Z. Zhao, “A novel miniature omnidirectional multi-rotor blimp,” in 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), 2023, pp. 1568–1573.
  2. M. Rossouw, S. Ravi, and M. Garratt, “Bio-inspired blimps and multiple-agent source localisation,” in 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2023, pp. 1–6.
  3. G. Gorjup and M. Liarokapis, “A low-cost, open-source, robotic airship for education and research,” IEEE Access, vol. 8, pp. 70 713–70 721, 2020.
  4. N. Yao, E. Anaya, Q. Tao, S. Cho, H. Zheng, and F. Zhang, “Monocular vision-based human following on miniature robotic blimp,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 3244–3249.
  5. M. Hou, Q. Tao, P. Varnell, and F. Zhang, “Modeling pointing tasks in human-blimp interactions,” in 2019 IEEE Conference on Control Technology and Applications (CCTA), 2019, pp. 73–78.
  6. T. X. Lin, M. Rossouw, A. B. Maxseiner, T. Schuler, M. A. Garratt, S. Ravi, F. Zhang, D. M. Lofaro, and D. A. Sofge, “Miniature autonomous blimps for indoor applications,” in AIAA SCITECH 2022 Forum, 2022, p. 1834.
  7. Q. Tao, M. Hou, and F. Zhang, “Modeling and identification of coupled translational and rotational motion of underactuated indoor miniature autonomous blimps,” in 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV).   IEEE, 2020, pp. 339–344.
  8. N. Azouz, S. Chaabani, J. Lerbet, A. Abichou et al., “Computation of the added masses of an unconventional airship,” Journal of Applied Mathematics, vol. 2012, 2012.
  9. Y. Wang, G. Zheng, D. Efimov, and W. Perruquetti, “Disturbance compensation based controller for an indoor blimp robot,” Robotics and Autonomous Systems, vol. 124, p. 103402, 2020.
  10. H. Cheng, Z. Sha, Y. Zhu, and F. Zhang, “Rgblimp: Robotic gliding blimp - design, modeling, development, and aerodynamics analysis,” IEEE Robotics and Automation Letters, vol. 8, no. 11, pp. 7273–7280, 2023.
  11. L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza, “Neurobem: Hybrid aerodynamic quadrotor model,” Proceedings of Robotics: Science and Systems XVII, p. 42, 2021.
  12. G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and imu,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 404–411, 2016.
  13. E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza, “Deep drone acrobatics,” arXiv preprint arXiv:2006.05768, 2020.
  14. P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p. eabh1221, 2021.
  15. A. Saviolo, G. Li, and G. Loianno, “Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate Model Predictive Trajectory Tracking,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 256–10 263, Oct. 2022.
  16. E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of nonlinear dynamics for model predictive control in the low-data limit,” Proceedings of the Royal Society A, vol. 474, no. 2219, p. 20180335, 2018.
  17. S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin, “Learning quadrotor dynamics using neural network for flight control,” in 2016 IEEE 55th Conference on Decision and Control (CDC), 2016, pp. 4653–4660.
  18. R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” in Proceedings of the 30th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, S. Dasgupta and D. McAllester, Eds., vol. 28, no. 3.   Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1310–1318.
  19. R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” Advances in neural information processing systems, vol. 31, 2018.
  20. A. Baier, Z. Boukhers, and S. Staab, “Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction,” Jun. 2022, arXiv:2103.06727 [cs].
  21. R. Wang, D. Maddix, C. Faloutsos, Y. Wang, and R. Yu, “Bridging physics-based and data-driven modeling for learning dynamical systems,” in Learning for Dynamics and Control.   PMLR, 2021, pp. 385–398.
  22. T. Z. Jiahao, M. A. Hsieh, and E. Forgoston, “Knowledge-based learning of nonlinear dynamics and chaos,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 31, no. 11, 2021.
  23. B. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. Kutz, and S. Brunton, “Pysindy: A python package for the sparse identification of nonlinear dynamical systems from data,” Journal of Open Source Software, vol. 5, no. 49, p. 2104, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yongjian Zhu (4 papers)
  2. Hao Cheng (190 papers)
  3. Feitian Zhang (16 papers)
Citations (1)