Papers
Topics
Authors
Recent
Search
2000 character limit reached

Assessing Quality Metrics for Neural Reality Gap Input Mitigation in Autonomous Driving Testing

Published 29 Apr 2024 in cs.SE | (2404.18577v1)

Abstract: Simulation-based testing of automated driving systems (ADS) is the industry standard, being a controlled, safe, and cost-effective alternative to real-world testing. Despite these advantages, virtual simulations often fail to accurately replicate real-world conditions like image fidelity, texture representation, and environmental accuracy. This can lead to significant differences in ADS behavior between simulated and real-world domains, a phenomenon known as the sim2real gap. Researchers have used Image-to-Image (I2I) neural translation to mitigate the sim2real gap, enhancing the realism of simulated environments by transforming synthetic data into more authentic representations of real-world conditions. However, while promising, these techniques may potentially introduce artifacts, distortions, or inconsistencies in the generated data that can affect the effectiveness of ADS testing. In our empirical study, we investigated how the quality of image-to-image (I2I) techniques influences the mitigation of the sim2real gap, using a set of established metrics from the literature. We evaluated two popular generative I2I architectures, pix2pix, and CycleGAN, across two ADS perception tasks at a model level, namely vehicle detection and end-to-end lane keeping, using paired simulated and real-world datasets. Our findings reveal that the effectiveness of I2I architectures varies across different ADS tasks, and existing evaluation metrics do not consistently align with the ADS behavior. Thus, we conducted task-specific fine-tuning of perception metrics, which yielded a stronger correlation. Our findings indicate that a perception metric that incorporates semantic elements, tailored to each task, can facilitate selecting the most appropriate I2I technique for a reliable assessment of the sim2real gap mitigation.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.