A Semilinear Elliptic Problem with Critical Exponent and Potential Terms (2404.18451v1)
Abstract: This paper addresses the following problem. \begin{equation} \left{ \begin{array}{lr} -{\Delta}u=\lambda I_\alpha*\Omega u+|u|{2*-2}u\mbox{ in }\Omega ,\nonumber u\in H_01(\Omega).\nonumber \end{array} \right. \end{equation} Here, $\Omega$ is a bounded domain in $\mathbb{R}N$ with $N\geq3$, $2*=\frac{2N}{N-2}$, $\lambda\in\mathbb{R}$, $\lambda\in(0,N)$, $I\alpha$ is the Riesz potential and \begin{align} I_\alpha*\Omega u(x):=\int\Omega \frac{\Gamma(\frac{N-\alpha}{2})}{\Gamma(\frac{\alpha}{2})\pi\frac{N}{2}2\alpha|x-y|{N-\alpha}} u(y)dy. \nonumber \end{align} We study the non-existence, existence and multiplicity results. Our argument combines Brezis-Nirenberg's method with the regularity results involving potential terms. Especially, we study the following nonlocal eigenvalue problem. \begin{equation} \left{ \begin{array}{lr} -{\Delta}u=\lambda I_\alpha*_\Omega u\mbox{ in }\Omega ,\nonumber \lambda\in\mathbb{R},\,u\in H_01(\Omega).\nonumber \end{array} \right. \end{equation}