Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Permutation-equivariant quantum convolutional neural networks (2404.18198v1)

Published 28 Apr 2024 in quant-ph, cs.AI, cs.CV, and cs.LG

Abstract: The Symmetric group $S_{n}$ manifests itself in large classes of quantum systems as the invariance of certain characteristics of a quantum state with respect to permuting the qubits. The subgroups of $S_{n}$ arise, among many other contexts, to describe label symmetry of classical images with respect to spatial transformations, e.g. reflection or rotation. Equipped with the formalism of geometric quantum machine learning, in this work we propose the architectures of equivariant quantum convolutional neural networks (EQCNNs) adherent to $S_{n}$ and its subgroups. We demonstrate that a careful choice of pixel-to-qubit embedding order can facilitate easy construction of EQCNNs for small subgroups of $S_{n}$. Our novel EQCNN architecture corresponding to the full permutation group $S_{n}$ is built by applying all possible QCNNs with equal probability, which can also be conceptualized as a dropout strategy in quantum neural networks. For subgroups of $S_{n}$, our numerical results using MNIST datasets show better classification accuracy than non-equivariant QCNNs. The $S_{n}$-equivariant QCNN architecture shows significantly improved training and test performance than non-equivariant QCNN for classification of connected and non-connected graphs. When trained with sufficiently large number of data, the $S_{n}$-equivariant QCNN shows better average performance compared to $S_{n}$-equivariant QNN . These results contribute towards building powerful quantum machine learning architectures in permutation-symmetric systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction to quantum machine learning, Contemporary Physics 56, 172 (2015), https://doi.org/10.1080/00107514.2014.964942 .
  2. M. Schuld and N. Killoran, Is quantum advantage the right goal for quantum machine learning?, PRX Quantum 3, 030101 (2022).
  3. J. Romero, J. P. Olson, and A. Aspuru-Guzik, Quantum autoencoders for efficient compression of quantum data, Quantum Science and Technology 2, 045001 (2017).
  4. I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neural networks, Nature Physics 15, 1273 (2019).
  5. P. Braccia, F. Caruso, and L. Banchi, How to enhance quantum generative adversarial learning of noisy information, New Journal of Physics 23, 053024 (2021).
  6. P. Braccia, L. Banchi, and F. Caruso, Quantum noise sensing by generating fake noise, Phys. Rev. Appl. 17, 024002 (2022).
  7. A. O. Boyle and R. Nikandish, A hybrid quantum-classical generative adversarial network for near-term quantum processors (2023), arXiv:2307.03269 [quant-ph] .
  8. M. Parigi, S. Martina, and F. Caruso, Quantum-noise-driven generative diffusion models (2023), arXiv:2308.12013 [quant-ph] .
  9. P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Lett. 113, 130503 (2014).
  10. Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust quantum speed-up in supervised machine learning, Nature Physics 17, 1013 (2021).
  11. S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms, Advanced Quantum Technologies 2, 1900070 (2019), https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900070 .
  12. P. Mernyei, K. Meichanetzidis, and İsmail İlkan Ceylan, Equivariant quantum graph circuits (2022), arXiv:2112.05261 [cs.LG] .
  13. R. D. P. East, G. Alonso-Linaje, and C.-Y. Park, All you need is spin: Su(2) equivariant variational quantum circuits based on spin networks (2023), arXiv:2309.07250 [quant-ph] .
  14. M. T. West, M. Sevior, and M. Usman, Reflection equivariant quantum neural networks for enhanced image classification, Machine Learning: Science and Technology 4, 035027 (2023b).
  15. S. Das, S. Martina, and F. Caruso, The role of data embedding in equivariant quantum convolutional neural networks (2024), arXiv:2312.13250 [quant-ph] .
  16. T. Hur, L. Kim, and D. K. Park, Quantum convolutional neural network for classical data classification, Quantum Machine Intelligence 4, 3 (2022).
  17. G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101, 110501 (2008).
  18. M. Kobayashi, K. Nakaji, and N. Yamamoto, Overfitting in quantum machine learning and entangling dropout, Quantum Machine Intelligence 4, 30 (2022).
  19. G. Verdon, J. Pye, and M. Broughton, A universal training algorithm for quantum deep learning (2018), arXiv:1806.09729 [quant-ph] .
  20. R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A 68, 022312 (2003).
  21. M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement in graph states, Phys. Rev. A 69, 062311 (2004).
Citations (2)

Summary

We haven't generated a summary for this paper yet.