Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing dark siren cosmology through multi-band gravitational wave synergetic observations (2404.18188v2)

Published 28 Apr 2024 in astro-ph.CO, gr-qc, and hep-ph

Abstract: Multi-band gravitational-wave (GW) standard siren observations are poised to herald a new era in the study of cosmic evolution. These observations offer higher signal-to-noise ratios and improved localizations compared to those achieved with single-band GW detection, which are crucial for the cosmological applications of dark sirens. In this work, we explore the role multi-band GW synergetic observations will play in measuring cosmological parameters, particularly in comparison with single GW observatory data. We used mock multi-band dark siren data from third-generation GW detectors and the baseline Decihertz Interferometer Gravitational-Wave Observatory to infer cosmological parameters. Our analysis shows that multi-band GW observations significantly improve sky localization accuracy by two to three orders of magnitude over single-band observations, although their impact on luminosity distance error remains limited. This results in a substantial improvement in the constraints on matter density and the Hubble constant, enhancing their constraint precision by $60\%$-$90\%$ and $52\%$-$85\%$, respectively. We conclude that the significant potential of multi-band GW synergistic observations for detecting GW signals and resolving the Hubble tension is highly promising and warrants anticipation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. A. G. Riess, Nature Rev. Phys. 2, 10 (2019), arXiv:2001.03624 [astro-ph.CO] .
  2. E. Abdalla et al., JHEAp 34, 49 (2022), arXiv:2203.06142 [astro-ph.CO] .
  3. M. Kamionkowski and A. G. Riess,   (2022), arXiv:2211.04492 [astro-ph.CO] .
  4. L. Perivolaropoulos and F. Skara, New Astron. Rev. 95, 101659 (2022), arXiv:2105.05208 [astro-ph.CO] .
  5. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  6. A. G. Riess et al., Astrophys. J. Lett. 934, L7 (2022), arXiv:2112.04510 [astro-ph.CO] .
  7. E. Di Valentino et al., Astropart. Phys. 131, 102605 (2021b), arXiv:2008.11284 [astro-ph.CO] .
  8. X. Zhang and Q.-G. Huang, Sci. China Phys. Mech. Astron. 63, 290402 (2020), arXiv:1911.09439 [astro-ph.CO] .
  9. H. Li and X. Zhang, Sci. Bull. 65, 1419 (2020), arXiv:2005.10458 [astro-ph.CO] .
  10. S. Vagnozzi, Phys. Rev. D 104, 063524 (2021), arXiv:2105.10425 [astro-ph.CO] .
  11. S. Vagnozzi, Phys. Rev. D 102, 023518 (2020), arXiv:1907.07569 [astro-ph.CO] .
  12. C. Cutler and D. E. Holz, Phys. Rev. D 80, 104009 (2009), arXiv:0906.3752 [astro-ph.CO] .
  13. R.-G. Cai and T. Yang, Phys. Rev. D 95, 044024 (2017), arXiv:1608.08008 [astro-ph.CO] .
  14. R.-G. Cai and T. Yang, EPJ Web Conf. 168, 01008 (2018), arXiv:1709.00837 [astro-ph.CO] .
  15. X. Zhang, Sci. China Phys. Mech. Astron. 62, 110431 (2019), arXiv:1905.11122 [astro-ph.CO] .
  16. J.-h. He, Phys. Rev. D 100, 023527 (2019), arXiv:1903.11254 [astro-ph.CO] .
  17. H.-Y. Chen, Phys. Rev. Lett. 125, 201301 (2020), arXiv:2006.02779 [astro-ph.HE] .
  18. R. C. Nunes, Phys. Rev. D 102, 024071 (2020), arXiv:2007.07750 [gr-qc] .
  19. L. Bian et al., Sci. China Phys. Mech. Astron. 64, 120401 (2021), arXiv:2106.10235 [gr-qc] .
  20. C. Ye and M. Fishbach, Phys. Rev. D 104, 043507 (2021), arXiv:2103.14038 [astro-ph.CO] .
  21. E. O. Colgáin, in 17th Italian-Korean Symposium on Relativistic Astrophysics (2022) arXiv:2203.03956 [astro-ph.CO] .
  22. Z. Guo, Science China Physics, Mechanics & Astronomy 65 (2021).
  23. B. F. Schutz, Nature 323, 310 (1986).
  24. D. E. Holz and S. A. Hughes, Astrophys. J. 629, 15 (2005), arXiv:astro-ph/0504616 .
  25. W. Del Pozzo, Phys. Rev. D 86, 043011 (2012), arXiv:1108.1317 [astro-ph.CO] .
  26. M. Fishbach et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 871, L13 (2019), arXiv:1807.05667 [astro-ph.CO] .
  27. R. Gray et al., Phys. Rev. D 101, 122001 (2020), arXiv:1908.06050 [gr-qc] .
  28. A. Palmese et al. (DES), Astrophys. J. Lett. 900, L33 (2020), arXiv:2006.14961 [astro-ph.CO] .
  29. J. R. Gair et al., Astron. J. 166, 22 (2023), arXiv:2212.08694 [gr-qc] .
  30. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
  31. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021b), arXiv:2010.14527 [gr-qc] .
  32. G. Dálya et al., Mon. Not. Roy. Astron. Soc. 514, 1403 (2022), arXiv:2110.06184 [astro-ph.CO] .
  33. M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010).
  34. B. P. Abbott et al. (LIGO Scientific), Class. Quant. Grav. 34, 044001 (2017b), arXiv:1607.08697 [astro-ph.IM] .
  35. P. Amaro-Seoane et al. (LISA),   (2017), arXiv:1702.00786 [astro-ph.IM] .
  36. P. Auclair et al. (LISA Cosmology Working Group),   (2022), arXiv:2204.05434 [astro-ph.CO] .
  37. W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
  38. Y.-L. Wu, Int. J. Mod. Phys. A 33, 1844014 (2018), arXiv:1805.10119 [physics.gen-ph] .
  39. J. Luo et al. (TianQin), Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
  40. H.-T. Wang et al., Phys. Rev. D 100, 043003 (2019), arXiv:1902.04423 [astro-ph.HE] .
  41. J. Luo et al., Class. Quant. Grav. 37, 185013 (2020), arXiv:2008.09534 [physics.ins-det] .
  42. V. K. Milyukov, Astron. Rep. 64, 1067 (2020).
  43. J. Mei et al. (TianQin), PTEP 2021, 05A107 (2021), arXiv:2008.10332 [gr-qc] .
  44. A. Sesana, Phys. Rev. Lett. 116, 231102 (2016), arXiv:1602.06951 [gr-qc] .
  45. S. Vitale, Phys. Rev. Lett. 117, 051102 (2016), arXiv:1605.01037 [gr-qc] .
  46. Z. Carson and K. Yagi, Phys. Rev. D 101, 044047 (2020), arXiv:1911.05258 [gr-qc] .
  47. A. Sesana, J. Phys. Conf. Ser. 840, 012018 (2017), arXiv:1702.04356 [astro-ph.HE] .
  48. A. Klein et al.,   (2022), arXiv:2204.03423 [astro-ph.HE] .
  49. T. Yang, JCAP 05, 044 (2021), arXiv:2103.01923 [astro-ph.CO] .
  50. C. Liu and L. Shao, Astrophys. J. 926, 158 (2022), arXiv:2108.08490 [astro-ph.HE] .
  51. L. Wen and Y. Chen, Phys. Rev. D 81, 082001 (2010), arXiv:1003.2504 [astro-ph.CO] .
  52. W. Zhao and L. Wen, Phys. Rev. D 97, 064031 (2018), arXiv:1710.05325 [astro-ph.CO] .
  53. H.-S. Cho, Class. Quant. Grav. 32, 235007 (2015), arXiv:1502.04399 [gr-qc] .
  54. C. Cutler et al., Phys. Rev. Lett. 70, 2984 (1993), arXiv:astro-ph/9208005 .
  55. L. Blanchet and B. R. Iyer, Phys. Rev. D 71, 024004 (2005), arXiv:gr-qc/0409094 .
  56. B. S. Sathyaprakash and B. F. Schutz, Living Rev. Rel. 12, 2 (2009), arXiv:0903.0338 [gr-qc] .
  57. S. Borhanian, Class. Quant. Grav. 38, 175014 (2021), arXiv:2010.15202 [gr-qc] .
  58. S. Kawamura et al., PTEP 2021, 05A105 (2021), arXiv:2006.13545 [gr-qc] .
  59. B. F. Schutz, Class. Quant. Grav. 28, 125023 (2011), arXiv:1102.5421 [astro-ph.IM] .
  60. K. Yagi and N. Seto, Phys. Rev. D 83, 044011 (2011), [Erratum: Phys.Rev.D 95, 109901 (2017)], arXiv:1101.3940 [astro-ph.CO] .
  61. S. Kawamura et al., Class. Quant. Grav. 23, S125 (2006).
  62. https://gwosc.org/eventapi/html/GWTC/.
  63. S. Hild et al., Class. Quant. Grav. 28, 094013 (2011), arXiv:1012.0908 [gr-qc] .
  64. https://cosmicexplorer.org/sensitivity.html.
  65. L. S. Finn, Phys. Rev. D 46, 5236 (1992), arXiv:gr-qc/9209010 .
  66. E. Barausse, Mon. Not. Roy. Astron. Soc. 423, 2533 (2012), arXiv:1201.5888 [astro-ph.CO] .
  67. R. Laureijs et al. (EUCLID),   (2011), arXiv:1110.3193 [astro-ph.CO] .
  68. D. Spergel et al.,   (2015), arXiv:1503.03757 [astro-ph.IM] .
  69. P. A. Abell et al. (LSST Science, LSST Project),   (2009), arXiv:0912.0201 [astro-ph.IM] .
  70. v. Ivezić et al. (LSST), Astrophys. J. 873, 111 (2019), arXiv:0805.2366 [astro-ph] .
  71. Y. Cao et al., Mon. Not. Roy. Astron. Soc. 480, 2178 (2018), arXiv:1706.09586 [astro-ph.IM] .
Citations (2)

Summary

We haven't generated a summary for this paper yet.